Specific features of pharmacokinetics and pharmacological advantages of liposomal iron for women’s health
https://doi.org/10.21518/ms2025-153
Abstract
Prevention and management of iron deficiency conditions, including iron deficiency anemia (IDA), in women is an important global health problem. Iron deficiency affects not only the somatic, but also the reproductive health of women, and may lead to decreased fertility. Prevention and management of anemia in pregnant women is essential, as iron deficiency can adversely affect the maternal and fetal well-being. In Russia, anemia is found in 35.5% of pregnant women. The market offers a wide range of iron supplements. Biand trivalent oral iron supplementation is often the first-line prevention and management for iron deficiency conditions, as it is an easy, affordable and effective therapy option. These supplements are not always effective; intestinal disorders and inflammatory diseases may reduce iron absorption. In addition, adverse effects, first of all gastrointestinal (GI) ones, such as abdominal pain, dyspepsia, nausea, vomiting, diarrhea or constipation often limit the use of iron supplements. The causes of GI mucosal injury include the direct toxic effect of iron ions on enterocytes, increased production of intestinal reactive oxygen species, and disruption of the gut microbiota. Intravenous iron therapy can cause iron overload, hypophosphatemia, potential risks of kidney injury and stimulation of atherosclerosis. Liposomal iron is a promising strategy for iron deficiency anemia management. Liposomes ensure absorption of iron from the intestinal lumen by the microfold cells (M cells) of the small intestine, and then by the lymphatic system, thus avoiding hepcidin control over absorption. Liposomal iron is significantly less toxic and is well tolerated by patients. Liposome properties are dependent on the phospholipids that form the lipid bilayer; sunflower lecithin is one of the promising alternatives.
About the Author
O. V. FilippovaRussian Federation
Olga V. Filippova, Dr. Sci. (Med.), Professor of the Chair of Industrial Pharmacy
8, Bldg. 2, Trubetskaya St., Moscow, 119991
References
1. Benson CS, Shah A, Stanworth SJ, Frise CJ, Spiby H, Lax SJ et al. The effect of iron deficiency and anaemia on women’s health. Anaesthesia. 2021;76(S4):84–95. https://doi.org/10.1111/anae.15405.
2. Camaschella C. Iron deficiency. Blood. 2019;133(1):30–39. https://doi.org/10.1182/blood-2018-05-815944.
3. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014;19(2):164–174. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC3999603/.
4. Паровичникова ЕН, Лукина ЕА, Пономарев РВ, Латышев ВД, Цветаева НВ, Двирнык ВН и др. Железодефицитная анемия: клинические рекомендации Москва, 2024. 56 с. Режим доступа: http://disuria.ru/_ld/14/1489_kr24D50D62MZ.pdf.
5. Iron deficiency anaemia – an ongoing challenge. Lancet Haematol. 2022;9(11):e797. https://doi.org/10.1016/s2352-3026(22)00325-8.
6. Patel PB, Patel N, Hedges MA, Benson AE, Tomer A, Lo JO, Shatzel JJ. Hematologic Complications of Pregnancy. Eur J Haematol. 2025;114(4):596–614. https://doi.org/10.1111/ejh.14372.
7. Karami M, Chaleshgar M, Salari N, Akbari H, Mohammadi M. Global Prevalence of Anemia in Pregnant Women: A Comprehensive Systematic Review and Meta-Analysis. Matern Child Health J. 2022;26(7):1473–1487. https://doi.org/10.1007/s10995-022-03450-1.
8. Lower CA, Gleason EG, Toda A, Srinivas SK, Levine LD, Power ME, Hamm RF. Implementation of a Standardized Protocol for Postpartum Anemia: A Prospective Cohort Study. Am J Perinatol. 2025;42(5):660–665. https://doi.org/10.1055/a-2414-1262.
9. Hamm RF, Wang EY, Levine LD, Speranza RJ, Srinivas SK. Implementation of a protocol for management of antepartum iron deficiency anemia: a prospective cohort study. Am J Obstet Gynecol MFM. 2022;4(2):100533. https://doi.org/10.1016/j.ajogmf.2021.100533.
10. Hämäläinen H, Hakkarainen K, Heinon S. Anaemia in the first but not in the second or third trimester is a risk factor for low birth weight. Clin Nutr. 2003;22(3):271–275 https://doi.org/10.1016/s0261-5614(02)00209-1.
11. Hansen R, Spangmose AL, Sommer VM, Holm C, Jørgensen FS, Krebs L, Pinborg A. Maternal first trimester iron status and its association with obstetric and perinatal outcomes. Arch Gynecol Obstet. 2022;306(4):1359–1371. https://doi.org/10.1007/s00404-022-06401-x.
12. Benson AE, Shatzel JJ, Ryan KS, Hedges MA, Martens K, Aslan JE, Lo JO. The incidence, complications, and treatment of iron deficiency in pregnancy. Eur J Haematol. 2022;109(6):633–642. https://doi.org/10.1111/ejh.13870.
13. Tulenheimo-Silfvast A, Ruokolainen-Pursiainen L, Simberg N. Association between iron deficiency and fertility. Acta Obstet Gynecol Scand. 2025;104(4):738–745. https://doi.org/10.1111/aogs.15046.
14. Holzer I, Ott J, Beitl K, Mayrhofer D, Heinzl F, Ebenbauer J, Parry JP. Iron status in women with infertility and controls: a case‐control study. Front Endocrinol. 2023;14:1173100. https://doi.org/10.3389/fendo.2023.1173100.
15. Milman N. Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy. Int J Hematol. 1996;63(2):103–135. https://doi.org/10.1016/0925-5710(95)00426-2.
16. Hung N, Shen CC, Hu YW, Hu LY, Yeh CM, Teng CJ et al. Risk of cancer in patients with iron deficiency anemia: a nationwide population-based study. PLoS ONE. 2015;10(3):e0119647. https://doi.org/10.1371/journal.pone.0119647.
17. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342–355. https://doi.org/10.1038/nrc3495.
18. Liberal Â, Pinela J, Vívar-Quintana AM, Ferreira ICFR, Barros L. Fighting Iron-Deficiency Anemia: Innovations in Food Fortificants and Biofortification Strategies. Foods. 2020;9(12):1871. https://doi.org/10.3390/foods9121871.
19. Moscheo C, Licciardello M, Samperi P, La Spina M, Di Cataldo A, Russo G. New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites. 2022;12(4):289. https://doi.org/10.3390/metabo12040289.
20. Kirilyuk AA. Iron-containing medicines: from clinical pharmacology topharmaceutical assistance (report 1). Vestnik Farmatsii. 2020;(3):81–97. (In Russ.) Available at: https://vestnik-pharm.vsmu.by/rezyume/2020-3-81-97.
21. Lo JO, Benson AE, Martens KL, Hedges MA, McMurry HS, DeLoughery T, Aslan JE, Shatzel JJ. The role of oral iron in the treatment of adults with iron deficiency. Eur J Haematol. 2023;110(2):123–130. https://doi.org/10.1111/ejh.13892.
22. Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64(5):731–742. https://doi.org/10.1136/gutjnl-2014-307720.
23. Zimmermann MB, Chassard C, Rohner F, N’goran EK, Nindjin C, Dostal A et al. The effects of iron fortification on the gut microbiota in African children: a randomized controlled trial in Cote d’Ivoire. Am J Clin Nutr. 2010;92(6):1406–1415. https://doi.org/10.3945/ajcn.110.004564.
24. Huynh U, Zastrow ML. Metallobiology of Lactobacillaceae in the gut microbiome. J Inorg Biochem. 2023;238:112023. https://doi.org/10.1016/j.jinorgbio.2022.112023.
25. Butwick AJ, McDonnell N. Antepartum and postpartum anemia: a narrative review. Int J Obstet Anesth. 2021;47:102985. https://doi.org/10.1016/j.ijoa.2021.102985.
26. Bengelloun Zahr S, Allata Y, El Mansoury M, Chouhani BA, Kabbali N, El Bardai G, Sqalli Houssaini T. Oral Liposomal Iron Versus Injectable Iron Sucrose for Anemia Treatment in Non-dialysis Chronic Kidney Disease Patients: A Non-inferiority Study. Cureus. 2024;16(9):e70114. https://doi.org/10.7759/cureus.70114.
27. Arastu AH, Elstrott BK, Martens KL, Cohen JL, Oakes MH, Rub ZT et al. Analysis of Adverse Events and Intravenous Iron Infusion Formulations in Adults With and Without Prior Infusion Reactions. JAMA Netw Open. 2022;5(3):e224488. https://doi.org/10.1001/jamanetworkopen.2022.4488.
28. Strubbe M, David K, Peene B, Eeckhout B, Van der Schueren B, Decallonne B et al. No longer to be ignored: Hypophosphatemia following intravenous iron administration. Rev Endocr Metab Disord. 2025;26(1):125–135. https://doi.org/10.1007/s11154-024-09926-5.
29. Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022;27(4):1372. https://doi.org/10.3390/molecules27041372.
30. Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharmaceutical Sci. 2015;10(2):81–98. https://doi.org/10.1016/j.ajps.2014.09.004.
31. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. https://doi.org/10.1016/j.heliyon.2022.e09394.
32. Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:286. https://doi.org/10.3389/fphar.2015.00286.
33. Zabodalova LA, Chernjavskij VA, Ishchenko TN, Skvortcova NN. Production of liposomes from soybean lecithin. ITMO University’s Scientific Journal Processes and Food Production Equipment. 2011;(2):75–81. (In Russ.) Available at: https://processes.ihbt.ifmo.ru/ru/article/9246/article_9246.htm.
34. Jesorka A, Orwar O. Liposomes: technologies and analytical applications. Annu Rev Anal Chem. 2008;801–832. https://doi.org/10.1146/annurev.anchem.1.031207.112747.
35. Desai KGH, Park J. Recent developments in microencapsulation of food ingredients. Drying Tech. 2005;23(7):1361–1394. Available at: https://www.tandfonline.com/doi/full/10.1081/DRT-200063478.
36. Lisovaya EV, Lisovoy VV, Viktorova EP, Marchenko LA. Application of liposomal systems derived from vegetabke lecithins in food technologies. New Technologies. 2019;(3):51–60. (In Russ.) https://doi.org/10.24411/2072-0920-2019-10305.
37. Жаркова ИМ, Рудаков ОБ, Полянский КК, Росляков ЮФ. Лецитины в технологиях продуктов питания. Воронеж: ВГУИТ; 2015. 256 с. Режим доступа: https://www.elibrary.ru/umykxf.
38. Guiotto EN, Tomás MC, Diehl BWK. 3 – Sunflower Lecithin. In: Ahmad MU, Xu X (Eds). Polar Lipids. Elsevier Inc.; 2015, pp. 57–75. https://doi.org/10.1016/B978-1-63067-044-3.50007-8
39. Singh RK, Barrand MA. Lipid peroxidation effects of a novel iron compound, ferric maltol. A comparison with ferrous sulphate. J Pharm Pharmacol. 1990;42(4):276–279. https://doi.org/10.1111/j.2042-7158.1990.tb05407.x.
40. Cengiz A, Schroën K, Berton-Carabin C. Towards Oxidatively Stable Emulsions Containing Iron-Loaded Liposomes: The Key Role of Phospholipid-to-Iron Ratio. Foods. 2021;10(6):1293. https://doi.org/10.3390/foods10061293.
41. Moscheo C, Licciardello M, Samperi P, La Spina M, Di Cataldo A, Russo G. New Insights into Iron Deficiency Anemia in Children: A Practical Review. Metabolites. 2022;12(4):289. https://doi.org/10.3390/metabo12040289.
42. Zhukovskaya EV, Anisimov VN, Sidorenko LV. Efficacy and safety of liposomal form of iron in the treatment of iron deficiency anemia in young children. Pediatric Bulletin of the South Ural. 2017;(2):48–55. (In Russ.) Available at: https://elibrary.ru/yrpewv.
43. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo WS, Zarghami N, Hanifehpour Y et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. https://doi.org/10.1186/1556-276X-8-102.
44. Pastore P, Roverso M, Tedesco E, Micheletto M, Mantovan E, Zanella M, Benetti F. Comparative Evaluation of Intestinal Absorption and Functional Value of Iron Dietary Supplements and Drug with Different Delivery Systems. Molecules. 2020;25(24):5989. https://doi.org/10.3390/molecules25245989.
45. Pisani A, Riccio E, Sabbatini M, Andreucci M, Del Rio A, Visciano B. Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anemia in CKD patients: a randomized trial. Nephrol Dial Transplant. 2015;30(4):645–652. https://doi.org/10.1093/ndt/gfu357.
46. Cesarano D, Borrelli S, Campilongo G, D’Ambra A, Papadia F, Garofalo C, et al. Efficacy and Safety of Oral Supplementation with Liposomal Iron in Non-Dialysis Chronic Kidney Disease Patients with Iron Deficiency. Nutrients. 2024;16(9):1255. https://doi.org/10.3390/nu16091255.
47. Vitale SG, Fiore M, La Rosa VL, Rapisarda AMC, Mazza G, Paratore M et al. Liposomal ferric pyrophosphate and ascorbic acid supplementation in pregnant women with iron deficiency anaemia: haematochemical, obstetric, neonatal and psychological outcomes in a prospective observational study. Int J Food Sci Nutr. 2022;73(2):221–229. https://doi.org/10.1080/09637486.2021.1950129.
48. Sharma A, Bellad RM, Charantimath US. Effectiveness and Safety of Liposomal Ferric Pyrophosphate vs. Ferrous Sulfate for Intermittent Iron Prophylaxis in Children Aged 6-59 months: A Randomized Controlled Trial. Indian J Pediatr. 2025;92(4):423. https://doi.org/10.1007/s12098-025-05436-7.
49. Kiliç BO, Konuksever D, Özbek NY. Comparative Efficacy of Ferrous, Ferric and Liposomal Iron Preparations for Prophylaxis in Infants. Indian Pediatr. 2024;61(7):621–626. Available at: https://pubmed.ncbi.nlm.nih.gov/38655891/.
50. Russo G, Guardabasso V, Romano F, Corti P, Samperi P, Condorelli A et al. Monitoring oral iron therapy in children with iron deficiency anemia: an observational, prospective, multicenter study of AIEOP patients (Associazione Italiana Emato-Oncologia Pediatrica). Ann Hematol. 2020;99(3):413–420. https://doi.org/10.1007/s00277-020-03906-w.
Review
For citations:
Filippova OV. Specific features of pharmacokinetics and pharmacological advantages of liposomal iron for women’s health. Meditsinskiy sovet = Medical Council. 2025;(4):95-103. (In Russ.) https://doi.org/10.21518/ms2025-153