Preview

Meditsinskiy sovet = Medical Council

Advanced search

Analysis of the dynamics of the ultrasound picture of the lungs of newborns during inhalation prophylaxis of bronchopulmonary dysplasia with the surfactant drug: Pilot prospective clinical study

https://doi.org/10.21518/ms2025-090

Abstract

Introduction. Bronchopulmonary dysplasia (BPD) is a chronic lung disease in children, which is a complication of premature birth, associated with adverse neurological outcomes, high incidence of respiratory morbidity and mortality. Currently, a new recommended method for the prevention of BPD has appeared using inhalation administration of the surfactant drug Tauractant.

Aim. Аnalyze the dynamics of the scoring of the ultrasound picture of the lungs during the inhalation administration of Tauractant, prescribed for the prevention of BPD.

Materials and methods. The study was conducted at the State Budgetary Healthcare Institution of the Sverdlovsk Region “Yekaterinburg Clinical Perinatal Center” in the period from 27.01.2024 to 27.01.2025. Included 14 children with a gestational age of < 30 weeks, who received respiratory therapy by the methods of nasal CPAP or mechanical ventilation by the 8–14th day of life.

Results. During our study and analysis, we noted cases of decreasing the intensity of respiratory therapy, namely: one child was extubated and transferred to nasal CPAP; two children initially on CPAP were transferred to low-flow nasal cannulas (LFNC); one child initially on CPAP was transferred to free-flow O2. Comparative analysis of such parameters as the frequency of mechanical ventilation, PiP parameters, LFNC frequency, FiO2, as well as the score according to lung ultrasound before the 1st and after the 5th dose of Tauractant did not show statistically significant differences in the main study sample (p > 0,05).

Conclusion. Inhalation use of Tauractant for the prevention of BPD in premature infants is a new and promising method that probably reduces the risk and severity of respiratory injury. However, at present there are limited data on the use of this technique and additional studies are required to determine its effectiveness and safety.

About the Authors

E. V. Shestak
Yekaterinburg Clinical Perinatal Center; Urals State Medical University
Russian Federation

Evgenii V. Shestak, Cand. Sci. (Med.), Head of the Department of Resuscitation and Intensive Care for Newborns, Anesthesiologist-Resuscitator of the Highest Qualification Category, Yekaterinburg Clinical Perinatal Center; Head of the Scientific Laboratory, Associate Professor of the Department of Hospital Pediatrics, Urals State Medical University

Bldg. 9, Komsomolskaya St., Ekaterinburg, 620066,

3, Repin St., Ekaterinburg, 620028



V. Yu. Starkov
Yekaterinburg Clinical Perinatal Center; Urals State Medical University
Russian Federation

Vadim Yu. Starkov, Anesthesiologist-Resuscitator of the First Qualification Category of the Department of Resuscitation and Intensive Care of Newborns, Yekaterinburg Clinical Perinatal Center; Junior Researcher of the Scientific Laboratory, Urals State Medical University

Bldg. 9, Komsomolskaya St., Ekaterinburg, 620066,

3, Repin St., Ekaterinburg, 620028



V. S. Makarov
Yekaterinburg Clinical Perinatal Center; Urals State Medical University
Russian Federation

Vsevolod S. Makarov, Anesthesiologist-Resuscitator of the Department of Resuscitation and Intensive Care of Newborns, Yekaterinburg Clinical Perinatal Center; Junior Researcher, Scientific Laboratory, Central Scientific Research Laboratory, Urals State Medical University; 

Bldg. 9, Komsomolskaya St., Ekaterinburg, 620066,

3, Repin St., Ekaterinburg, 620028



D. S. Dodrov
Yekaterinburg Clinical Perinatal Center
Russian Federation

Dmitry S. Dodrov, Deputy Chief Physician for Pediatrics, Anesthesiologist-Resuscitator, Department of Resuscitation and Intensive Care for Newborns

Bldg. 9, Komsomolskaya St., Ekaterinburg, 620066



D. V. Svetlakova
Yekaterinburg Clinical Perinatal Center; Urals State Medical University
Russian Federation

Daria V. Svetlakova, Anesthesiologist-Resuscitator of the First Qualification Category of the ORITN, Yekaterinburg Clinical Perinatal Center; Junior Researcher of the Scientific Laboratory, Urals State Medical University

Bldg. 9, Komsomolskaya St., Ekaterinburg, 620066,

3, Repin St., Ekaterinburg, 620028



T. S. Adylov
Yekaterinburg Clinical Perinatal Center; Urals State Medical University
Russian Federation

Teimur S. Adylov, Anesthesiologist-Resuscitator of the Department of Resuscitation and Intensive Care of Newborns, Yekaterinburg Clinical Perinatal Center; Junior Researcher, Scientific Laboratory, Urals State Medical University

Bldg. 9, Komsomolskaya St., Ekaterinburg, 620066,

3, Repin St., Ekaterinburg, 620028



M. V. Evdokimova
Yekaterinburg Clinical Perinatal Center
Russian Federation

Mariya V. Evdokimova, Neonatologist, Department of Resuscitation and Intensive Care of Newborns

Bldg. 9, Komsomolskaya St., Ekaterinburg, 620066



References

1. Principi N, Di Pietro GM, Esposito S. Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies. J Transl Med. 2018;16(1):36. https://doi.org/10.1186/s12967-018-1417-7.

2. Shukla VV, Ambalavanan N. Recent Advances in Bronchopulmonary Dysplasia. Indian J Pediatr. 2021;88(7):690–695. https://doi.org/10.1007/s12098-021-03766-w.

3. Siffel C, Kistler KD, Lewis JFM, Sarda SP. Global incidence of bronchopulmonary dysplasia among extremely preterm infants: a systematic literature review. J Matern Fetal Neonatal Med. 2021;34(11):1721–1731. https://doi.org/10.1080/14767058.2019.1646240.

4. Алексеева АА, Балашова ЕН, Баранов АА, Басаргина МА, Батышева ТТ, Беляева ИА и др. Бронхолегочная дисплазия: клинические рекомендации. 2024. Режим доступа: https://neonatology.pro/wp-content/uploads/2024/06/cr_bpd_final_2024.pdf.pdf.

5. Овсянников ДЮ, Геппе НА, Малахов АБ, Дегтярев ДН (ред.). Бронхолегочная дисплазия. М.; 2020. Режим доступа: https://pulmodeti.ru/wp-content/uploads/BLD-Klin_Rukovod_2020_Nestle_BLOK_NEW.pdf.

6. Raimondi F, Yousef N, Migliaro F, Capasso L, De Luca D. Point-of-care lung ultrasound in neonatology: classification into descriptive and functional applications. Pediatr Res. 2021;90(3):524–531. https://doi.org/10.1038/s41390-018-0114-9.

7. Shestak EV, Ksenofontova OL, Kovtun OP, Starkov VYu. Protocol of observation, examination and antibacterial therapy of newborns with suspected and/or confirmed neonatal infection. Russian Pediatric Journal. 2024;5(2):94–106. (In Russ.) https://doi.org/10.15690/rpj.v5i2.2756.

8. Brat R, Yousef N, Klifa R, Reynaud S, Shankar Aguilera S, De Luca D. Lung Ultrasonography Score to Evaluate Oxygenation and Surfactant Need in Neonates Treated With Continuous Positive Airway Pressure. JAMA Pediatr. 2015;169(8):e151797 . https://doi.org/10.1001/jamapediatrics.2015.1797.

9. Escourrou G, De Luca D. Lung ultrasound decreased radiation exposure in preterm infants in a neonatal intensive care unit. Acta Paediatr. 2016;105(5):e237-e239. https://doi.org/10.1111/apa.13369.

10. Alonso-Ojembarrena A, Aldecoa-Bilbao V, De Luca D. Imaging of bronchopulmonary dysplasia. Semin Perinatol. 2023;47(6):151812. https://doi.org/10.1016/j.semperi.2023.151812.

11. Liu J, Chen XX, Li XW, Chen SW, Wang Y, Fu W. Lung Ultrasonography to Diagnose Transient Tachypnea of the Newborn. Chest. 2016;149(5):1269–1275. https://doi.org/10.1016/j.chest.2015.12.024.

12. Blank DA, Kamlin COF, Rogerson SR, Fox LM, Lorenz L, Kane SC et al. Lung ultrasound immediately after birth to describe normal neonatal transition: an observational study. Arch Dis Child Fetal Neonatal Ed. 2018;103(2):F157–F162. https://doi.org/10.1136/archdischild-2017-312818.

13. Liu J, Wang Y, Fu W, Yang CS, Huang JJ. Diagnosis of neonatal transient tachypnea and its differentiation from respiratory distress syndrome using lung ultrasound. Medicine. 2014;93(27):e197. https://doi.org/10.1097/MD.0000000000000197.

14. Sawires HK, Abdel Ghany EA, Hussein NF, Seif HM. Use of lung ultrasound in detection of complications of respiratory distress syndrome. Ultrasound Med Biol. 2015;41(9):2319–2325. https://doi.org/10.1016/j.ultrasmedbio.2015.04.024.

15. Singh P, Patnaik S, Verma A, Garegrat R, Maheshwari R, Suryawanshi P. Diagnostic utility of lung ultrasound in predicting the need for surfactant therapy in preterm neonates with respiratory distress. Front Pediatr. 2023;11:1307761. https://doi.org/10.3389/fped.2023.1307761.

16. Starkov VYu, Shestak EV. Lung ultrasound as a diagnostic tool for determining the therapeutic strategy for respiratory distress syndrome in preterm neonates. Review of the literature. Neonatology: News, Opinions, Training. 2024;12(4):84–96. (In Russ.) https://doi.org/10.33029/2308-2402-2024-12-4-84-96.

17. Jensen EA, Watterberg KL. Postnatal Corticosteroids To Prevent Bronchopulmonary Dysplasia. Neoreviews. 2023;24(11):e691-e703. https://doi.org/10.1542/neo.24-11-e691.

18. Radulova P, Vakrilova L, Hitrova-Nikolova S, Dimitrova V. Lung ultrasound in premature infants as an early predictor of bronchopulmonary dysplasia. J Clin Ultrasound. 2022;50(9):1322–1327. https://doi.org/10.1002/jcu.23207.

19. Oulego-Erroz I, Alonso-Quintela P, Terroba-Seara S, Jiménez-González A, Rodríguez-Blanco S. Early assessment of lung aeration using an ultrasound score as a biomarker of developing bronchopulmonary dysplasia: a prospective observational study. J Perinatol. 2021;41(1):62–68. https://doi.org/10.1038/s41372-020-0724-z.

20. Soll RF, Morley CJ. Prophylactic versus selective use of surfactant for preventing morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2000;(2):CD000510. https://doi.org/10.1002/14651858.CD000510.

21. Polin RA, Carlo WA; Committee on Fetus and Newborn; American Academy of Pediatrics. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156–163. https://doi.org/10.1542/peds.2013-3443.

22. Perez-Gil J, Weaver TE. Pulmonary surfactant pathophysiology: current models and open questions. Physiology. 2010;25(3):132–141. https://doi.org/10.1152/physiol.00006.2010.

23. Jeon GW. Surfactant preparations for preterm infants with respiratory distress syndrome: past, present, and future. Korean J Pediatr. 2019;62(5):155–161. https://doi.org/10.3345/kjp.2018.07185.

24. Minocchieri S, Berry CA, Pillow JJ; CureNeb Study Team. Nebulised surfactant to reduce severity of respiratory distress: a blinded, parallel, randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2019;104(3):F313–F319. https://doi.org/10.1136/archdischild-2018-315051.

25. Robillard E, Alarie Y, Dagenais-Perusse P, Baril E, Guilbeault A. Microaerosol administration of synthetic beta-gamma-dipalmitoyl-L-alpha-lecithin in the respiratory distress syndrome: a preliminary report. Can Med Assoc J. 1964;90(2):55–57. Available at: https://pubmed.ncbi.nlm.nih.gov/?term=Microaerosol+administration+of+synthetic+beta-gamma-dipalmitoyl-L-alphalecithin+in+the+respiratory+distress+syndrome%3A+a+preliminary+report.

26. Adams FH, Towers B, Osher AB, Ikegami M, Fujiwara T, Nozaki M. Effects of tracheal instillation of natural surfactant in premature lambs. I. Clinical and autopsy findings. Pediatr Res. 1978;12(8):841–848. https://doi.org/10.1203/00006450-197808000-00008.

27. Isayama T, Iwami H, McDonald S, Beyene J. Association of Noninvasive Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review and Meta-analysis. JAMA. 2016;316(6):611–624. https://doi.org/10.1001/jama.2016.10708.

28. Verder H, Robertson B, Greisen G, Ebbesen F, Albertsen P, Lundstrøm K, Jacobsen T. Surfactant therapy and nasal continuous positive airway pressure for newborns with respiratory distress syndrome. Danish-Swedish Multicenter Study Group. N Engl J Med. 1994;331(16):1051–1055. https://doi.org/10.1056/NEJM199410203311603.

29. Herting E, Härtel C, Göpel W. Less invasive surfactant administration (LISA): chances and limitations. Arch Dis Child Fetal Neonatal Ed. 2019;104(6):F655-F659 . https://doi.org/10.1136/archdischild-2018-316557.

30. Pillow JJ, Minocchieri S. Innovation in surfactant therapy II: surfactant administration by aerosolization. Neonatology. 2012;101(4):337–344. https://doi.org/10.1159/000337354.

31. Mazela J, Merritt TA, Finer NN. Aerosolized surfactants. Curr Opin Pediatr. 2007;19(2):155–162. https://doi.org/10.1097/MOP.0b013e32807fb013.

32. Bianco F, Pasini E, Nutini M, Murgia X, Stoeckl C, Schlun M et al. In Vitro Performance of an Investigational Vibrating-Membrane Nebulizer with Surfactant under Simulated, Non-Invasive Neonatal Ventilation Conditions: Influence of Continuous Positive Airway Pressure Interface and Nebulizer Positioning on the Lung Dose. Pharmaceutics. 2020;12(3):257. https://doi.org/10.3390/pharmaceutics12030257.

33. Köhler E, Jilg G, Avenarius S, Jorch G. Lung deposition after inhalation with various nebulisers in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2008;93(4):F275-F279. https://doi.org/10.1136/adc.2007.121285.

34. Linner R, Perez-de-Sa V, Cunha-Goncalves D. Lung deposition of nebulized surfactant in newborn piglets. Neonatology. 2015;107(4):277–282. https://doi.org/10.1159/000369955.

35. Nord A, Linner R, Milesi I, Zannin E, di Castri M, Bianco F et al. A novel delivery system for supraglottic atomization allows increased lung deposition rates of pulmonary surfactant in newborn piglets. Pediatr Res. 2020;87(6):1019–1024. https://doi.org/10.1038/s41390-020-0815-8.

36. Milesi I, Tingay DG, Zannin E, Bianco F, Tagliabue P, Mosca F et al. Intratracheal atomized surfactant provides similar outcomes as bolus surfactant in preterm lambs with respiratory distress syndrome. Pediatr Res. 2016;80(1):92–100. https://doi.org/10.1038/pr.2016.95.

37. Dani C, Talosi G, Piccinno A, Ginocchio VM, Balla G, Lavizzari A et al. A Randomized, Controlled Trial to Investigate the Efficacy of Nebulized Poractant Alfa in Premature Babies with Respiratory Distress Syndrome. J Pediatr. 2022;246:40–47.e5. https://doi.org/10.1016/j.jpeds.2022.02.054.

38. Liu S, Wang Y, Zhu X, Chen F, Shi Y. Comparative efficacy and safety of pulmonary surfactant delivery strategies in neonatal RDS: a network meta-analysis. BMC Pulm Med. 2024;24(1):637. https://doi.org/10.1186/s12890-024-03429-4.

39. Gaertner VD, Thomann J, Bassler D, Rüegger CM. Surfactant Nebulization to Prevent Intubation in Preterm Infants: A Systematic Review and Metaanalysis. Pediatrics. 2021;148(5):e2021052504 . https://doi.org/10.1542/peds.2021-052504.

40. Bautin A, Chubulava G, Kozlov I, Poptzov V, Osovskikh V, Seiliev A et al. Surfactant therapy for patients with ARDS after cardiac surgery. J Liposome Res. 2006;16(3):265–272. https://doi.org/10.1080/08982100600848777.

41. Rosenberg OA, Bautin AE, Osovskich VV, Tsibulkin EK, Gavrilin SV, Kozlov IA. When to start surfactant therapy (ST-therapy) of acute lung injury? Eur Respir J. 2001;18(Suppl. 38):153. https://doi.org/10.1183/09031936.01.00215301.

42. Vlasenko A, Osovskikh V, Tarasenko M, Rosenberg O. Efficiency of surfactant therapy for ALI/ARDS in homogenous nosologic groups of patients. Eur Respir J. 2005;26(Suppl. 49):90. https://doi.org/10.1183/09031936.05.00009005.

43. Bautin AE, Avdeev SN, Seyliev AA, Shvechkova MV, Merzhoeva ZM, Trushenko NV et al. Inhalation surfactant therapy in the integrated treatment of severe COVID-19 pneumonia. Tuberculosis and Lung Diseases. 2020;98(9):6–12. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-9-6-12.

44. Rosenberg OA. Pulmonary Surfactant Preparations and Surfactant Therapy for ARDS in Surgical Intensive Care (a Literature Review). Creative Surgery and Oncology. 2019;9(1):50–65. (In Russ.) https://doi.org/10.24060/2076-3093-2019-9-1-50-65

45. Bautin AE, Naumov AB, Rubinchik VE, Osovskikh VV, Etin VL, Rosenberg OA. Applying of the exogenous surfactant in the cardiac surgery clinics of st. petersburg: from the technology to the evolution of therapeutic strategy. Translational Medicine. 2014;(1):92–97. (In Russ.) https://doi.org/10.18705/2311-4495-2014-0-1-92-97.

46. Moroz VV, Vlasenko AV, Golubev AM, Yakovlev VN, Alekseyev VG, Bulatov NN, Smelaya TV. The Pathogenesis and Differential Diagnosis of Acute Respiratory Distress Syndrome Induced by Direct and Indirect Etiological Factors. Obshchaya Reanimatologiya. 2011;7(3):5. (In Russ.) https://doi.org/10.15360/1813-9779-2011-3-5.

47. Karpova AL, Tsareva TV, Zherlitsyna LG, Sedova GA, Lyashchenko AYu, Olendar NV. Retrospective analysis of Curosurf versus Surfactant BL treatment in preterm infants. Intensive Care Journal. 2006;(4). (In Russ.) Available at: http://icj.ru/journal/number-4-2006/89-retrospektivnyy-analizlecheniya-nedonoshennyh-novorozhdennyhkurosurfom-i-surfaktantom-bl.html.

48. Antonov AG, Ryndin AYu. Surfactant-BL in complex therapy of respiratory disorders in the neonate. Clinical Practice in Pediatrics. 2007;2(4):61–64. (In Russ.) Available at: https://www.phdynasty.ru/katalog/zhurnaly/voprosy-prakticheskoy-pediatrii/2007/tom-2-nomer-4/11391.

49. Perepelitsa SA, Golubev AM, Moroz VV. Effects of Exogenous Surfactants on the Parameters of Blood Gas Composition in Neonatal Respiratory Distress Syndrome. Obshchaya Reanimatologiya. 2007;3(3):59. (In Russ.) https://doi.org/10.15360/1813-9779-2007-3-59.


Review

For citations:


Shestak EV, Starkov VY, Makarov VS, Dodrov DS, Svetlakova DV, Adylov TS, Evdokimova MV. Analysis of the dynamics of the ultrasound picture of the lungs of newborns during inhalation prophylaxis of bronchopulmonary dysplasia with the surfactant drug: Pilot prospective clinical study. Meditsinskiy sovet = Medical Council. 2025;(4):124-134. (In Russ.) https://doi.org/10.21518/ms2025-090

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)