Preview

Meditsinskiy sovet = Medical Council

Advanced search

Addressing acromegaly and its musculoskeletal complications through new treatment strategies: Focus on growth hormone antagonists

https://doi.org/10.21518/ms2025-178

Abstract

Acromegaly is a rare but severe multi-organ disease that negatively affects the quality and duration of patients’ lives. This is exacerbated by the formation of a pathological complex of progressive hormonal, metabolic, and systemic disorders, each of which is an independent risk factor for early disability and premature death. In acromegaly, damage to the musculoskeletal system occurs due to the hyperproduction of growth hormone and insulin-like growth factor-1, leading to increased regeneration of bone tissue with changes in the cortical and trabecular structures of the bones. The activity of osteoclasts exceeds that of osteoblasts, resulting in specific microarchitectural changes in trabecular bone and loss of bone mass. Characteristic musculoskeletal disorders in patients with acromegaly include hypertrophic arthropathies of the peripheral and axial skeleton, temporomandibular joint diseases, and carpal tunnel syndrome, which diminish the quality of life for patients even after normalization of hormone secretion. The issue of therapy selection for patients with acromegaly and osteoarthropathy has been insufficiently studied. Medical therapy for acromegaly is an important stage both for the preoperative preparation of patients and for subsequent treatment. In cases of partial or complete resistance to monotherapy with somatostatin analogs or their intolerance, the use of a growth hormone receptor antagonist, specifically pegvisomant, is advisable as a recommended therapy. This drug suppresses the action of excess growth hormone, reduces the concentration of insulin-like growth factor-1 in the serum, as well as serum proteins sensitive to growth hormone, including free insulin-like growth factor-1; it modulates the proliferation, differentiation, and mineralization of osteoblast cells; it exhibits high selectivity for growth hormone receptors and does not interact with the receptors of other hormones, including prolactin. This type of therapy is highly effective, neutralizes the adverse effects of somatostatin analogs on carbohydrate metabolism, and stabilizes tumor growth. A distinctive feature of pegvisomant’s action is its ability to influence the proliferation, differentiation, and mineralization of osteoblast cells, which reduces the frequency of spinal fractures in patients with acromegaly.

About the Authors

N. V. Vorokhobina
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Natalia V. Vorokhobina, Dr. Sci. (Med.), Professor, Head of the Department of Endocrinology named after Academician V.G. Baranov

41, Kirochnaya St., St Petersburg, 191015, Russia



S. N. Fogt
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Sergei N. Fogt, Cand. Sci. (Med.), Associate Professor of the Department of Endocrinology named after Academician V.G. Baranov

41, Kirochnaya St., St Petersburg, 191015, Russia



A. V. Kuznetsova
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Alla V. Kuznetsova, Cand. Sci. (Med.), Associate Professor of the Department of Endocrinology named after Academician V.G. Baranov

41, Kirochnaya St., St Petersburg, 191015, Russia



K. A. Balandina
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Kseniya A. Balandina, Cand. Sci. (Med.), Associate Professor of the Department of Endocrinology named after Academician V.G. Baranov

41, Kirochnaya St., St Petersburg, 191015, Russia



R. K. Galakhova
North-Western State Medical University named after I.I. Mechnikov
Russian Federation

Ravilya K. Galakhova, Cand. Sci. (Med.), Associate Professor of the Department of Endocrinology named after Academician V.G. Baranov

41, Kirochnaya St., St Petersburg, 191015, Russia



References

1. Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;(5):535–559. https://doi.org/10.1210/er.2007-0036.

2. Mazziotti G, Biagioli E, Maffezzoni F, Spinello M, Serra V, Maroldi R et al. Bone turnover, bone mineral density, and fracture risk in acromegaly: A meta-analysis. J Clin Endocrinol Metab. 2015;100(2):384–394. https://doi.org/10.1210/jc.2014-2937.

3. Danilowicz K, Sosa S. Acromegaly and Cancer: An Update. Arch Med Res. 2023;54(8):102914. https://doi.org/10.1186/s40842-020-00113-4.

4. Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C et al. A Consensus on the Diagnosis and Treatment of Acromegaly Comorbidities: An Update. J Clin Endocrinol Metab. 2020;105(4):e937–e946. https://doi.org/10.1210/clinem/dgz096.

5. Brue T, Rahabi H, Barry A, Barlier A, Bertherat J, Borson-Chazot F et al. Position statement on the diagnosis and management of acromegaly: The French National Diagnosis and Treatment Protocol (NDTP). Ann Endocrinol. 2023;84(6):697–710. https://doi.org/10.1016/j.ando.2023.08.003.

6. Giustina A. Acromegaly and vertebral fractures: facts and questions. Trends Endocrinol Metab. 2020;31(4):274–275. https://doi.org/10.1016/j.tem.2020.01.011.

7. Chiloiro S, Giampietro A, Gagliardi I, Bondanelli M, Veleno M, Ambrosio MR et al. Impact of the diagnostic delay of acromegaly on bone health: data from a real life and long term follow-up experience. Pituitary. 2022;25(6):831–841. https://doi.org/10.1007/s11102-022-01266-4.

8. Knyazeva OV, Molitvoslovova NN, Rozhinskaya LYа. The prevalence of thyroid tumors in patients with acromegaly. Clinical and Experimental Thyroidology. 2015;11(3):34–38. (In Russ.) https://doi.org/10.14341/ket2015334-38.

9. Claessen KMJA, Mazziotti G, Biermasz NR, Giustina A. Bone and Joint Disorders in Acromegaly. Neuroendocrinology. 2016;103(1):86–95. https://doi.org/10.1159/000375450.

10. Mazziotti G, Maffezzoni F, Frara S, Giustina A. Acromegalic osteopathy. Pituitary. 2017;20(1):63–69. https://doi.org/10.1007/s11102-016-0758-6.

11. Bonadonna S, Mazziotti G, Nuzzo M, Bianchi A, Fusco A, De Marinis L et al. Increased prevalence of radiological spinal deformities in active acromegaly: A cross-sectional study in postmenopausal women. J Bone Miner Res. 2005;20(10):1837–1844. https://doi.org/10.1359/JBMR.050603.

12. Skjodt MK, Abrahamsen B. New insights in the pathophysiology, epidemiology, and response to treatment of osteoporotic vertebral fractures. J Clin Endocrinol Metab. 2023;108(11):e1175–1185. https://doi.org/10.1210/clinem/dgad256.

13. Killinger Z, Payer J, Lazurova I, Imrich R, Homerova Z, Kuzma M et al. Arthropathy in acromegaly. Rheum Dis Clin North Am. 2010;36(4):713–720. https://doi.org/10.1016/j.rdc.2010.09.004.

14. Tsoriev TT, Belaya ZhE. Bone and joint structural impairments in acromegaly. Problemy Endokrinologii. 2018;64(2):121–129. (In Russ.) https://doi.org/10.14341/probl9305.

15. Mazziotti G, Frara S, Giustina A. Pituitary diseases and bone. Endocr Rev. 2018;39(4):440–488. https://doi.org/10.1210/er.2018-00005.

16. Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med. 2007;357(9):905–916. https://doi.org/10.1056/NEJMra067395.

17. Li H, Bartold PM, Zhang CZ, Clarkson RW, Young WG, Waters MJ. Growth hormone and insulin-like growth factor I induce bone morphogenetic proteins 2 and 4: a mediator role in bone and tooth formation? Endocrinology. 1998;139(9):3855–3862. https://doi.org/10.1210/endo.139.9.6211.

18. Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of betacatenin. Proc Natl Acad Sci U S A. 2000;97(22):12103–12108. https://doi.org/10.1073/pnas.210394297.

19. Zhao HY, Liu JM, Ning G, Zhao YJ, Chen Y, Sun LH et al. Relationships between insulin-like growth factor-I (IGF-I) and OPG, RANKL, bone mineral density in healthy Chinese women. Osteoporos Int. 2008;19(2):221–226. https://doi.org/10.1007/s00198-007-0440-y.

20. Halhali A, Diaz L, Sanchez I, Garabedian M, Bourges H, Larrea F. Effects of I GF-I on 1,25-dihydroxyvitamin D (3) synthesis by human placenta in culture. Mol Hum Reprod. 1999;5(8):771–776. https://doi.org/10.1093/molehr/5.8.771.

21. Mazziotti G, Maffezzoni F, Giustina A. Vitamin D-binding protein: one more piece in the puzzle of acromegalic osteopathy? Endocrine. 2016;52(2):183–186. https://doi.org/10.1007/s12020-016-0890-0.

22. List EO, Berryman DE, Jensen EA, Kulkarni P, McKenna S, Kopchick JJ. New insights of growth hormone (GH)actions from tissue-specific GH receptor knockouts in mice. Arch Endocrinol Metab. 2020;63(6):557–567. https://doi.org/10.20945/2359-3997000000185.

23. Park HJ, Ahn SJ, Jang J, Kim S, Park Y, Kim K. Genetic effect of single nucleotide polymorphisms in growth hormone receptor gene on the risk of nonsyndromic mandibular prognathism in the Korean population. Orthod Craniofac Res. 2022;25(3):437–446. https://doi.org/10.1111/ocr.12554.

24. Marañón-Vásquez GA, Vieira AR, de Carvalho Ramos AG, Dantas B, Romano FL, Palma-Dibb RG et al. GHR and IGF2R genes may contribute to normal variations in craniofacial dimensions: insights from an admixed population. Am J Orthod Dentofac Orthop. 2020;158(5):722–730. https://doi.org/10.1016/j.ajodo.

25. Tobón-Arroyave SI, Jiménez-Arbeláez GA, Alvarado-Gómez VA, Isaza-Guzmán DM, Flórez-Moreno GA, Pérez-Cano MI. Association analysis between rs6184 and rs6180 polymorphisms of growth hormone receptor gene regarding skeletal-facial profile in a Colombian population. Eur J Orthod. 2018;40(4):378–386. https://doi.org/10.1093/ejo/cjx070.

26. Lin S, Li C, Li C, Zhang X. Growth hormone receptor mutations related to individual dwarfism. Int J Mol Sci. 2018;19(5):1433. https://doi.org/10.3390/ijms19051433.

27. Pelsma ICM, Biermasz NR, Pereira AM, Van Furth WR, Appelman-Dijkstra NM, Kloppenburg M et al. Progression of vertebral fractures in long-term controlled acromegaly: A 9-year follow-up study. Eur J Endocrinol. 2020;183(4):427–437. https://doi.org/10.1530/EJE-20-0415.

28. Maffezzoni F, Maddalo M, Frara S, Monica Mezzone M, Zorza I, Baruffaldi F et al. High-resolution-cone beam tomography analysis of bone microarchitecture in patients with acromegaly and radiological vertebral fractures. Endocrine. 2016;54(2):532–542. https://doi.org/10.1007/s12020-016-1078-3.

29. Pontes J, Madeira M, Lima CHA, Ogino LL, de Paula Paranhos Neto F, de Mendonça LMC et al. Exon 3-deleted growth hormone receptor isoform is not related to worse bone mineral density or microarchitecture or to increased fracture risk in acromegaly. J Endocrinol Invest. 2020;43(2):163–171. https://doi.org/10.1007/s40618-019-01096-5.

30. Chiloiro S, Giampietro A, Gagliardi I, Bondanelli M, Veleno M, Ambrosio MR et al. Impact of the diagnostic delay of acromegaly on bone health: data from a real life and long term follow-up experience. Pituitary. 2022;25(6):831–841. https://doi.org/10.1007/s11102-022-01266-4.

31. Bima C, Chiloiro S, Mormando M, Piacentini S, Bracaccia E, Giampietro A et al. Understanding the effect of acromegaly on the human skeleton. Expert Rev Endocrinol Metab. 2016;11(3):263–270. https://doi.org/10.1080/17446651.2016.1179108.

32. Chiloiro S, Gagliardi I, Bianchi A, Giampietro A, Medici M, Allora A et al. Cholecalciferol use is associated with a decreased risk of incident morphometric vertebral fractures in acromegaly. J Clin Endocrinol Metab. 2023;109(1):e58–68. https://doi.org/10.1210/clinem.

33. Chiloiro S, Mirra F, Federico D, Giampietro A, Visconti F, Rossi L et al. The role of growth hormone receptor isoforms and their effects in bone metabolism and skeletal fragility. Protein Pept Lett. 2020;27(12):1260–1267. https://doi.org/10.2174/0929866527666200616151105.

34. Katznelson L, Laws ER, Melmed S, Molitch M E, Murad M H, Utz A et al. Acromegaly: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2014;99(11):3933–3951. https://doi.org/10.1210/JC.2014-2700.

35. Giustina A, Barkhoudarian G, Beckers A, Ben-Shlomo A, Biermasz N, Biller B et al. Multidisciplinary management of acromegaly: A consensus. Rev Endocr Metab Disord. 2020;21(4):667–678. https://doi.org/10.1007/s11154-020-09588-z.

36. Ma L, Luo D, Yang T, Wu S, Li M, Chen C et al. Combined therapy of somatostatin analogues with pegvisomant for the treatment of acromegaly: a meta-analysis of prospective studies. BMC Endocr Disord. 2020;20(1):126. https://doi.org/10.1186/s12902-020-0545-2.

37. Marques-Pamies M, Gil J, Valassi E, Hernández M, Biagetti B, Giménez-Palop O et al. Revisiting the usefulness of the short acute octreotide test to predict treatment outcomes in acromegaly. Front Endocrinol. 2023;14:1269787. https://doi.org/10.3389/fendo.2023.1269787.

38. Puig Domingo M. Treatment of acromegaly in the era of personalized and predictive medicine. Clin Endocrinol. 2015;83(1):3–14. https://doi.org/10.1111/cen.12731.

39. Lindsay R, Cooper C, Hanley DA, Barton I, Broy SB, Flowers K. Risk of New Vertebral Fracture. J Am Med Assoc. 2001;285(3):7–10. https://doi.org/10.1001/jama.285.3.320.

40. Kasuki L, Vieira Neto L, Wildemberg LEA, Colli LM, Castro M, Takiya CM et al. AIP expression in sporadic somatotropinomas is a predictor of the response to octreotide LAR therapy independent of SSTR2 expression. Endocr Relat Cancer. 2012;19(3):25–29. https://doi.org/10.1530/ERC-12-0020.

41. Bevan JS, Newell-Price J, Wass JAH, Atkin SL, Bouloux PM, Chapman J et al. Home administration of lanreotide Autogel by patients with acromegaly, or their partners, is safe and effective. Clin Endocrinol. 2008;68(3):343–349. https://doi.org/10.1111/j.1365-2265.2007.03044.x.

42. Dzeranova LK, Povaliaeva AA, Romanova AA, Przhiyalkovskaya EG, Pigarova EA, Fedorova NS. Pegvisomant and current approaches to the medical treatment of acromegaly (literature review and case report). Obesity and Metabolism. 2019;16(4):73–79. (In Russ.) https://doi.org/10.14341/omet12207.

43. Fleseriu M, Fuhrer-Sakel D, van der Lely AJ, De Marinis L, Brue T, van der Lans-Bussemaker J et al. Мore than a decade of real-world experience of pegvisomant for acromegaly: ACROSTUDY. Eur J Endocrinol. 2021;185(4):525–538. https://doi.org/10.1530/EJE-21-0239.

44. Mazziotti G, Bianchi A, Bonadonna S, Nuzzo M, Cimino V, Fusco A et al. Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: influence of GH replacement therapy. J Bone Miner Res. 2006;21(4):520–528. https://doi.org/10.1359/JBMR.050603.

45. Feola T, Cozzolino A, Simonelli I, Sbardella E, Pozza C, Giannetta E et al. Pegvisomant Improves Glucose Metabolism in Acromegaly: A Meta-Analysis of Prospective Interventional Studies. J Clin Endocrinol Metab. 2019;104(7):2892–2902. https://doi.org/10.1210/jc.2018-02281.

46. Lim DST, Freseriu M. Personalized Medical Treatment of Patients With Acromegaly. Rev Endocr Pract. 2022;28(3):321–332. https://doi.org/10.1016/j.eprac.2021.12.017.

47. Leonart LP, Tonin FS, Ferreira VL, Fernandez-Llimos F, Pontarolo R. Effectiveness and safety of pegvisomant: a systematic review and metaanalysis of observational longitudinal studies. Endocrine. 2019;63(1):18–26. https://doi.org/10.1007/s12020- 018-1729-7.

48. Chiloiro S, Mormando M, Bianchi A, Giampietro A, Milardi D, Bima C et al. Prevalence of morphometric vertebral fractures in “difficult” patients with acromegaly with different biochemical outcomes after multimodal treatment. Endocrine. 2018;59(2):449–453. https://doi.org/10.1007/s12020-017-1391-5.

49. Chiloiro S, Mazziotti G, Giampietro A, Bianchi A, Frara S, Mormando M et al. Effects of pegvisomant and somatostatin receptor ligands on incidence of vertebral fractures in patients with acromegaly. Pituitary. 2018;21(3):302–308. https://doi.org/10.1007/s11102-018-0873-7.

50. Fleseriu M, Biller B, Freda P, Gadelha M, Giustina A, Katznelson L et al. Pituitary Society update to acromegaly management guidelines. Pituitary. 2021;24(1):1–13. https://doi.org/10.1007/s11102-020-01091-7.

51. Chiloiro S, Costanza F, Giampietro A, Infante A, Mattogno PP, Angelini F et al. GH receptor polymorphisms guide second-line therapies to prevent acromegaly skeletal fragility: preliminary results of a pilot study. Front Endocrinol. 2024;15:1414101. https://doi.org/10.3389/fendo.2024.1414101.

52. Bianchi A, Giustina A, Cimino V, Pola R, Angelini F, Pontecorvi A et al. Influence of growth hormone receptor d3 and full-length isoforms on biochemical treatment outcomes in acromegaly. J Clin Endocrinol Metab. 2009;94(6):2015–2022. https://doi.org/10.1210/jc.2008-133.

53. Giustina A, Barkhoudarian G, Beckers A, Ben-Shlomo A, Biermasz N, Biller B et al. Multidisciplinary management of acromegaly: A consensus. Rev Endocr Metab Disord. 2020;21(4):667–678. https://doi.org/10.1007/s11154-020-09588-z.

54. Padova G, Borzì G, Incorvaia L, Siciliano G, Migliorino V, Vetri M, Tita P. Prevalence of osteoporosis and vertebral fractures in acromegalic patients. Clin Cases Miner Bone Metab. 2011;8(3):37–43. https://doi.org/10.1007/s00198-022-06376-0.

55. Fiebrich H-B, Van Den Berg G, Kema IP, Links TP, Kleibeuker JH, Van Beek AP et al. Deficiencies in fat-soluble vitamins in long-term users of somatostatin analogue. Aliment Pharmacol Ther. 2010;32(11-12):1398–1404. https://doi.org/10.1111/j.1365-2036.2010.04479.


Review

For citations:


Vorokhobina NV, Fogt SN, Kuznetsova AV, Balandina KA, Galakhova RK. Addressing acromegaly and its musculoskeletal complications through new treatment strategies: Focus on growth hormone antagonists. Meditsinskiy sovet = Medical Council. 2025;(6):117-123. (In Russ.) https://doi.org/10.21518/ms2025-178

Views: 59


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)