L-Ornithine salts as somatotropic axis modulators for the correction of sarcopenia in chronic liver disease
https://doi.org/10.21518/ms2025-223
Abstract
Sarcopenia is a syndrome characterized by a progressive and generalized loss of skeletal muscle mass, strength, and function, that exists in a primary and a secondary form. Secondary sarcopenia complicates chronic liver disease with a prevalence ranging from 30 to 100% depending on the nature of disease, its severity, and compensation status. The presence of sarcopenia limits normal daily activity, reduces work capacity, diminishes quality of life, may lead to disability, and increases all-cause mortality risk. Despite the evident medical and social burden of this condition, as of today, no agents for its treatment have proven to be both effective and safe. Significant attention of the scientific community has recently been drawn to molecules that improve and normalize the somatotropic axis function, which is found to be impaired in all types of sarcopenia. L-ornithine and its salts (L-aspartate, α-ketoglutarate) are not only capable of direct hepatoprotection and facilitation of ammonia clearance, but also modulate the somatotropic axis as well as have a number of pleiotropic metabolic effects. Preclinical studies have found L-ornithine to act as an indirect growth hormone secretagogue and enhance the activity of its main effector molecule, insulin-like growth factor 1. In clinical trials, course treatment with L-ornithine L-aspartate as an add-on to standard therapy increased the levels of circulating growth hormone, promoted arm muscle growth, improved handgrip strength and standing balance. L-ornithine α-ketoglutarate increased appetite and skeletal muscle gain in malnourished older adults, mitigated glutamine loss by skeletal muscle following major surgery, and improved quality of life in elderly convalescent subjects. The available data suggest potential effectiveness of L-ornithine formulations for the treatment of sarcopenia associated with chronic liver disease, and highlight this indication as an important field for future research.
About the Authors
V. A. PrikhodkoRussian Federation
Veronika A. Prikhodko, Cand. Sci. (Biol.), Associate Professor at the Department of Pharmacology and Clinical Pharmacology
14а, Professor Popov St., St Petersburg, 197376
S. V. Okovityi
Russian Federation
Sergey V. Okovityi, Dr. Sci. (Med.), Professor, Head of the Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical-Pharmaceutical University; Professor at Scientific and Clinical Center for Gastroenterology and Hepatology, Saint Petersburg State University
14а, Professor Popov St., St Petersburg, 197376,
7–9, Universitetskaya Emb., St Petersburg, 199034
References
1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.
2. Golounina O, Fadeev VV, Belaya ZhE. Modern guidelines for the diagnosis of sarcopenia. Clinical Medicine (Russian Journal). 2023;101(4-5):198–207. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-4-5-198-207.
3. Mokrysheva NG, Krupinova JA, Volodicheva VL, Mirnaya SS, Melnichenko GA. A view at sarcopenia by endocrinologist. Osteoporosis and Bone Diseases. 2019;22(4):19–26. (In Russ.) https://doi.org/10.14341/osteo12465.
4. Toroptsova NV, Feklistov AY. Musculoskeletal system pathology: focus on sarcopenia and osteosarcopenia. Meditsinskiy Sovet. 2019;(4):78–86. (In Russ.) https://doi.org/10.21518/2079-701X-2019-4-78-86.
5. Adamova IG, Taraki BM, Ibragimova GM, Fedorov IG, Manuylova OO, Pshennikova IG et al. Phenotypic Features of Sarcopenia in Fatty Liver Disease. Effective Pharmacotherapy. 2024;20(18):86–92. (In Russ.) Available at: https://umedp.ru/articles/fenotipicheskie_osobennosti_sarkopenii_pri_zhirovoy_bolezni_pecheni.html.
6. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1(2):129–133. https://doi.org/10.1007/s13539-010-0014-2
7. Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, CelisMorales C. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86–99. https://doi.org/10.1002/jcsm.12783.
8. Yuan S, Larsson SC. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism. 2023;144:155533. https://doi.org/10.1016/j.metabol.2023.155533.
9. Giri S, Anirvan P, Angadi S, Singh A, Lavekar A. Prevalence and outcome of sarcopenia in non-alcoholic fatty liver disease. World J Gastrointest Pathophysiol. 2024;15(1):91100. https://doi.org/10.4291/wjgp.v15.i1.91100.
10. Sun X, Liu Z, Chen F, Du T. Sarcopenia modifies the associations of nonalcoholic fatty liver disease with all-cause and cardiovascular mortality among older adults. Sci Rep. 2021;11(1):15647. https://doi.org/10.1038/s41598-021-95108-1.
11. Tuo S, Yeo YH, Chang R, Wen Z, Ran Q, Yang L et al. Prevalence of and associated factors for sarcopenia in patients with liver cirrhosis: A systematic review and meta-analysis. Clin Nutr. 2024;43(1):84–94. https://doi.org/10.1016/j.clnu.2023.11.008.
12. Ostrovskaya AS, Maevskaya MV. Sarcopenia and malnutrition in patients with liver diseases. Meditsinskiy Sovet. 2023;17(18):35–42. (In Russ.) https://doi.org/10.21518/ms2023-374.
13. Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M et al. Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing. 2013;42(2):203–209. https://doi.org/10.1093/ageing/afs194.
14. Salimov UR, Stoma IO, Fedoruk DA, Kovalev AA, Scherba AE, Rummo OO. Sarcopenia in chronic liver disease, can we predict complications? Transplantologiya. 2022;14(4):408–420. (In Russ.) https://doi.org/10.23873/2074-0506-2022-14-4-408-420.
15. Cesari M, Bernabei R, Vellas B, Fielding RA, Rooks D, Azzolino D et al. Challenges in the Development of Drugs for Sarcopenia and Frailty – Report from the International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force. J Frailty Aging. 2022;11(2):135–142. https://doi.org/10.14283/jfa.2022.30.
16. Rolland Y, Dray C, Vellas B, Barreto PS. Current and investigational medications for the treatment of sarcopenia. Metabolism. 2023;149:155597. https://doi.org/10.1016/j.metabol.2023.155597.
17. Dent E, Morley JE, Cruz-Jentoft AJ, Arai H, Kritchevsky SB, Guralnik J et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging. 2018;22(10):1148–1161. https://doi.org/10.1007/s12603-018-1139-9.
18. Ribeiro de Oliveira Longo Schweizer J, Ribeiro-Oliveira A Jr, Bidlingmaier M. Growth hormone: isoforms, clinical aspects and assays interference. Clin Diabetes Endocrinol. 2018;4:18. https://doi.org/10.1186/s40842-018-0068-1.
19. Ben-Shlomo A, Melmed S. Pituitary somatostatin receptor signaling. Trends Endocrinol Metab. 2010;21(3):123–133. https://doi.org/10.1016/j.tem.2009.12.003.
20. de Lecea L, Criado JR, Prospero-Garcia O, Gautvik KM, Schweitzer P, Danielson PE et al. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature. 1996;381(6579):242–245. https://doi.org/10.1038/381242a0.
21. Elaghori A, Salem PES, Azzam E, Abu Elfotoh N. Ghrelin level in patients with liver cirrhosis. Acta Endocrinol. 2019;15(1):62–68. https://doi.org/10.4183/aeb.2019.62.
22. Devesa J. The Complex World of Regulation of Pituitary Growth Hormone Secretion: The Role of Ghrelin, Klotho, and Nesfatins in It. Front Endocrinol. 2021;12:636403. https://doi.org/10.3389/fendo.2021.636403.
23. Hassouna R, Zizzari P, Tolle V. The ghrelin/obestatin balance in the physiological and pathological control of growth hormone secretion, body composition and food intake. J Neuroendocrinol. 2010;22(7):793–804. https://doi.org/10.1111/j.1365-2826.2010.02019.x.
24. Bulgakova SV, Treneva EV, Zakharova NO, Gorelik SG. Aging and growthhormone: assumptions and facts (review of literature). Klinichescheskaya Laboratornaya Diagnostika. 2019;64(12):708–715 (In Russ.) https://doi.org/10.18821/0869-2084-2019-64-12-708-715.
25. Ho KK, O’Sullivan AJ, Burt MG. The physiology of growth hormone (GH) in adults: translational journey to GH replacement therapy. J Endocrinol. 2023;257(2):e220197. https://doi.org/10.1530/JOE-22-0197.
26. Lutsenko AS, Nagaeva EV, Belaya ZhE, Chukhacheva OS, Zenkova TS, Melnichenko GA. Current aspects of diagnosis and treatment of adult GHdeficiency. Problemy Endokrinologii. 2019;65(5):373–388. (In Russ.) https://doi.org/10.14341/probl10322.
27. Dedov II, Bezlepkina OB, Pankratova MS, Nagaeva EV, Raykina EN, Peterkova VA. Growth hormone – 30 years of clinical practice: past, present, future. Problemy Endokrinologii. 2024;70(1):4–12. (In Russ.) https://doi.org/10.14341/probl13432.
28. Carter-Su C, Schwartz J, Argetsinger LS. Growth hormone signaling pathways. Growth Horm IGF Res. 2016;28:11–15. https://doi.org/10.1016/j.ghir.2015.09.002.
29. Ahmed SBM, Prigent SA. Insights into the Shc Family of Adaptor Proteins. J Mol Signal. 2017;12:2. https://doi.org/10.5334/1750-2187-12-2.
30. Piwien-Pilipuk G, Van Mater D, Ross SE, MacDougald OA, Schwartz J. Growth hormone regulates phosphorylation and function of CCAAT/ enhancer-binding protein beta by modulating Akt and glycogen synthase kinase-3. J Biol Chem. 2001;276(22):19664–19671. https://doi.org/10.1074/jbc.M010193200.
31. Welsh CL, Allen S, Madan LK. Setting sail: Maneuvering SHP2 activity and its effects in cancer. Adv Cancer Res. 2023;160:17–60. https://doi.org/10.1016/bs.acr.2023.03.003.
32. Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol. 2018;9:35. https://doi.org/10.3389/fendo.2018.00035.
33. LeRoith D, Holly JMP, Forbes BE. Insulin-like growth factors: Ligands, binding proteins, and receptors. Mol Metab. 2021;52:101245. https://doi.org/10.1016/j.molmet.2021.101245.
34. Liu Y, Duan M, Zhang D, Xie J. The role of mechano growth factor in chondrocytes and cartilage defects: a concise review. Acta Biochim Biophys Sin. 2023;55(5):701–712. https://doi.org/10.3724/abbs.2023086.
35. Durzyńska J, Philippou A, Brisson BK, Nguyen-McCarty M, Barton ER. The pro-forms of insulin-like growth factor I (IGF-I) are predominant in skeletal muscle and alter IGF-I receptor activation. Endocrinology. 2013;154(3):1215–1224. https://doi.org/10.1210/en.2012-1992.
36. Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–177. https://doi.org/10.1210/er.2008-0027.
37. Liu W, Thomas SG, Asa SL, Gonzalez-Cadavid N, Bhasin S, Ezzat S. Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol Metab. 2003;88(11):5490–5496. https://doi.org/10.1210/jc.2003-030497.
38. Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, Schneider BE, Mantzoros CS. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012;61(12):1725–1738. https://doi.org/10.1016/j.metabol.2012.09.002.
39. Matheny RW Jr, Nindl BC. Loss of IGF-IEa or IGF-IEb impairs myogenic differentiation. Endocrinology. 2011;152(5):1923–1934. https://doi.org/10.1210/en.2010-1279.
40. Fang XB, Song ZB, Xie MS, Liu YM, Zhang WX. Synergistic effect of glucocorticoids and IGF-1 on myogenic differentiation through the Akt/GSK-3β pathway in C2C12 myoblasts. Int J Neurosci. 2020;130(11):1125–1135. https://doi.org/10.1080/00207454.2020.1730367.
41. Kumar A, Davuluri G, Silva RNE, Engelen MPKJ, Ten Have GAM, Prayson R et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65(6):2045–2058. https://doi.org/10.1002/hep.29107.
42. Gellhaus B, Böker KO, Schilling AF, Saul D. Therapeutic Consequences of Targeting the IGF-1/PI3K/AKT/FOXO3 Axis in Sarcopenia: A Narrative Review. Cells. 2023;12(24):2787. https://doi.org/10.3390/cells12242787.
43. Adamek A, Kasprzak A. Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int J Mol Sci. 2018;19(5):1308. https://doi.org/10.3390/ijms19051308.
44. Joo SK, Kim W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin Mol Hepatol. 2023;29(Suppl.):S68–S78. https://doi.org/10.3350/cmh.2022.0358.
45. Hersch EC, Merriam GR. Growth hormone (GH)-releasing hormone and GH secretagogues in normal aging: Fountain of Youth or Pool of Tantalus? Clin Interv Aging. 2008;3(1):121–129. Available at: https://pubmed.ncbi.nlm.nih.gov/18488883.
46. Zaffanello M, Pietrobelli A, Cavarzere P, Guzzo A, Antoniazzi F. Complex relationship between growth hormone and sleep in children: insights, discrepancies, and implications. Front Endocrinol. 2024;14:1332114. https://doi.org/10.3389/fendo.2023.1332114.
47. Schilbach K, Bidlingmaier M. Growth hormone binding protein – physiological and analytical aspects. Best Pract Res Clin Endocrinol Metab. 2015;29(5):671–683. https://doi.org/10.1016/j.beem.2015.06.004.
48. Maheshwari H, Sharma L, Baumann G. Decline of plasma growth hormone binding protein in old age. J Clin Endocrinol Metab. 1996;81(3):995–997. https://doi.org/10.1210/jcem.81.3.8772563.
49. Hattori N, Kurahachi H, Ikekubo K, Ishihara T, Moridera K, Hino M et al. Effects of sex and age on serum GH binding protein levels in normal adults. Clin Endocrinol. 1991;35(4):295–297. https://doi.org/10.1111/j.1365-2265.1991.tb03539.x.
50. Akamizu T, Murayama T, Teramukai S, Miura K, Bando I, Irako T et al. Plasma ghrelin levels in healthy elderly volunteers: the levels of acylated ghrelin in elderly females correlate positively with serum IGF-I levels and bowel movement frequency and negatively with systolic blood pressure. J Endocrinol. 2006;188(2):333–344. https://doi.org/10.1677/joe.1.06442.
51. Di Francesco V, Fantin F, Residori L, Bissoli L, Micciolo R, Zivelonghi A et al. Effect of age on the dynamics of acylated ghrelin in fasting conditions and in response to a meal. J Am Geriatr Soc. 2008;56(7):1369–1370. https://doi.org/10.1111/j.1532-5415.2008.01732.x.
52. Zhu J, Zhou T, Menggen M, Aimulajiang K, Wen H. Ghrelin regulating liver activity and its potential effects on liver fibrosis and Echinococcosis. Front Cell Infect Microbiol. 2024;13:1324134. https://doi.org/10.3389/fcimb.2023.1324134.
53. Ilyushchenko AK, Machekhina LV, Strazhesko ID, Tkacheva ON. The role of IGF-1/GH in the aging process and the development of age-related diseases. Obesity and Metabolism. 2023;20(2):149–157. (In Russ.) https://doi.org/10.14341/omet12934.
54. van den Beld AW, Carlson OD, Doyle ME, Rizopoulos D, Ferrucci L, van der Lely AJ, Egan JM. IGFBP-2 and aging: a 20-year longitudinal study on IGFBP-2, IGF-I, BMI, insulin sensitivity and mortality in an aging population. Eur J Endocrinol. 2019;180(2):109–116. https://doi.org/10.1530/eje-18-0422.
55. Donahue LR, Hunter SJ, Sherblom AP, Rosen C. Age-related changes in serum insulin-like growth factor-binding proteins in women. J Clin Endocrinol Metab. 1990;71(3):575–579. https://doi.org/10.1210/jcem71-3-575.
56. Ferrari U, Schmidmaier R, Jung T, Reincke M, Martini S, Schoser B et al. IGF-I/IGFBP3/ALS Deficiency in Sarcopenia: Low GHBP Suggests GH Resistance in a Subgroup of Geriatric Patients. J Clin Endocrinol Metab. 2021;106(4):e1698–e1707. https://doi.org/10.1210/clinem/dgaa972.
57. Fusco A, Miele L, D’Uonnolo A, Forgione A, Riccardi L, Cefalo C et al. Nonalcoholic fatty liver disease is associated with increased GHBP and reduced GH/IGF-I levels. Clin Endocrinol. 2012;77(4):531–536. https://doi.org/10.1111/j.1365-2265.2011.04291.x.
58. Svegliati-Baroni G, Ridolfi F, Di Sario A, Casini A, Marucci L, Gaggiotti G et al. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology. 1999;29(6):1743–1751. https://doi.org/10.1002/hep.510290632.
59. Sheptulina AF, Dzhioeva ON, Drapkina OM. Sarcopenia and non-alcoholic fatty liver disease: shared pathogenesis mechanisms as possible targets of therapy and prevention. Profilakticheskaya Meditsina. 2021;24(4):57–62. (In Russ.) https://doi.org/10.17116/profmed20212404157.
60. Poggiogalle E, Lubrano C, Gnessi L, Mariani S, Lenzi A, Donini LM. Fatty Liver Index Associates with Relative Sarcopenia and GH/IGF-1 Status in Obese Subjects. PLoS ONE. 2016;11(1):e0145811. https://doi.org/10.1371/journal.pone.0145811.
61. Wadhawan A, Verma N, Kaur P, Garg P, Ralmilay S, Nadda RK et al. Sarcopenia, frailty and growth hormone-insulin like growth factor axis among decompensated and alcohol-associated hepatitis patients. J Clin Exp Hepatol. 2024;14(Suppl. 1):102013. https://doi.org/10.1016/j.jceh.2024.102013.
62. Kaur P, Verma N, Wadhawan A, Garg P, Ralmilay S, Kalra N et al. Insulinlike Growth Factor-1 Levels Reflect Muscle and Bone Health and Determine Complications and Mortality in Decompensated Cirrhosis. J Clin Exp Hepatol. 2025;15(1):102402. https://doi.org/10.1016/j.jceh.2024.102402.
63. Saeki C, Oikawa T, Kanai T, Nakano M, Torisu Y, Sasaki N et al. Relationship between osteoporosis, sarcopenia, vertebral fracture, and osteosarcopenia in patients with primary biliary cholangitis. Eur J Gastroenterol Hepatol. 2021;33(5):731–737. https://doi.org/10.1097/MEG.0000000000001791.
64. Pugliese N, Arcari I, Aghemo A, Lania AG, Lleo A, Mazziotti G. Osteosarcopenia in autoimmune cholestatic liver diseases: Causes, management, and challenges. World J Gastroenterol. 2022;28(14):1430–1443. https://doi.org/10.3748/wjg.v28.i14.1430.
65. Cabrera D, Cabello-Verrugio C, Solís N, San Martín D, Cofré C, Pizarro M et al. Somatotropic Axis Dysfunction in Non-Alcoholic Fatty Liver Disease: Beneficial Hepatic and Systemic Effects of Hormone Supplementation. Int J Mol Sci. 2018;19(5):1339. https://doi.org/10.3390/ijms19051339.
66. Tanaka M, Kaji K, Nishimura N, Asada S, Koizumi A, Matsuda T et al. Blockade of angiotensin II modulates insulin-like growth factor 1-mediated skeletal muscle homeostasis in experimental steatohepatitis. Biochim Biophys Acta Mol Cell Res. 2024;1871(2):119649. https://doi.org/10.1016/j.bbamcr.2023.119649.
67. Miller BS. What do we do now that the long-acting growth hormone is here? Front Endocrinol. 2022;13:980979. https://doi.org/10.3389/fendo.2022.980979.
68. Laron Z. The Era of Cadaveric Pituitary Extracted Human Growth Hormone (1958–1985): Biological and Clinical Aspects. Pediatr Endocrinol Rev. 2018;16(Suppl. 1):11–16. https://doi.org/10.17458/per.vol16.2018.la.hghcadavericpituitary.
69. Miller BS. What do we do now that the long-acting growth hormone is here? Front Endocrinol. 2022;13:980979. https://doi.org/10.3389/fendo.2022.980979.
70. Sharashkina NV, Runikhina NK, Tkacheva ON, Ostapenko VS, Doudinskaya EN. Sarcopenia: prevalence, diagnosis and therapeutic options in elderly. Clinical Gerontology. 2016;22(3-4):46–51. (In Russ.) Available at: https://cyberleninka.ru/article/n/rasprostranennost-metodydiagnostiki-i-korrektsiya-sarkopenii-u-pozhilyh/viewer.
71. Thompson WW, Anderson DB, Heiman ML. Biodegradable microspheres as a delivery system for rismorelin porcine, a porcine-growth-hormonereleasing-hormone. J Control Release. 1997;43(1):9–22. https://doi.org/10.1016/S0168-3659(96)01467-8.
72. Teichman SL, Neale A, Lawrence B, Gagnon C, Castaigne JP, Frohman LA. Prolonged stimulation of growth hormone (GH) and insulin-like growth factor I secretion by CJC-1295, a long-acting analog of GH-releasing hormone, in healthy adults. J Clin Endocrinol Metab. 2006;91(3):799–805. https://doi.org/10.1210/jc.2005-1536.
73. Arvat E, di Vito L, Maccagno B, Broglio F, Boghen MF, Deghenghi R et al. Effects of GHRP-2 and hexarelin, two synthetic GH-releasing peptides, on GH, prolactin, ACTH and cortisol levels in man. Comparison with the effects of GHRH, TRH and hCRH. Peptides. 1997;18(6):885–891. https://doi.org/10.1016/s0196-9781(97)00016-8.
74. Camanni F, Ghigo E, Arvat E. Growth hormone-releasing peptides and their analogs. Front Neuroendocrinol. 1998;19(1):47–72. https://doi.org/10.1006/frne.1997.0158.
75. Ishida J, Saitoh M, Ebner N, Springer J, Anker SD, von Haehling S. Growth hormone secretagogues: history, mechanism of action, and clinical development. JCSM Rapid Commun. 2020;3(1):25–37. https://doi.org/10.1002/rco2.9.
76. Giorgioni G, Del Bello F, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E et al. Advances in the Development of Nonpeptide Small Molecules Targeting Ghrelin Receptor. J Med Chem. 2022;65(4):3098–3118. https://doi.org/10.1021/acs.jmedchem.1c02191.
77. Smith RG, Thorner MO. Growth Hormone Secretagogues as Potential Therapeutic Agents to Restore Growth Hormone Secretion in Older Subjects to Those Observed in Young Adults. J Gerontol A Biol Sci Med Sci. 2023;78(Suppl. 1):38–43. https://doi.org/10.1093/gerona/glad022.
78. Wakabayashi H, Arai H, Inui A. The regulatory approval of anamorelin for treatment of cachexia in patients with non-small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: facts and numbers. J Cachexia Sarcopenia Muscle. 2021;12(1):14–16. https://doi.org/10.1002/jcsm.12675.
79. Consitt LA, Saneda A, Saxena G, List EO, Kopchick JJ. Mice overexpressing growth hormone exhibit increased skeletal muscle myostatin and MuRF1 with attenuation of muscle mass. Skelet Muscle. 2017;7(1):17. https://doi.org/10.1186/s13395-017-0133-y.
80. Nishizaki H, Kagawa T, Sugama J, Kobayashi A, Moritoh Y, Watanabe M. Oral SSTR5 Antagonist SCO-240 for Growth Hormone Stimulation: A Phase I Single-Dose Study in Healthy Individuals. Clin Pharmacol Ther. 2024;115(6):1326–1335. https://doi.org/10.1002/cpt.3212.
81. Butterworth RF. L-Ornithine L-Aspartate for the Treatment of Sarcopenia in Chronic Liver Disease: The Taming of a Vicious Cycle. Can J Gastroenterol Hepatol. 2019;2019:8182195. https://doi.org/10.1155/2019/8182195.
82. Оковитый СВ, Приходько ВА, Безбородкина НН, Кудрявцев БН. Гепатопротекторы. 2-е изд. М.: ГЭОТАР-Медиа; 2022. 240 с. https://doi.org/10.33029/9704-6689-6-LIV-1-240.
83. Zhao TJ, Sakata I, Li RL, Liang G, Richardson JA, Brown MS et al. Ghrelin secretion stimulated by {beta}1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc Natl Acad Sci U S A. 2010;107(36):15868–15873. https://doi.org/10.1073/pnas.1011116107.
84. Date Y. Ghrelin and the vagus nerve. Methods Enzymol. 2012;514:261–269. https://doi.org/10.1016/B978-0-12-381272-8.00016-7.
85. Ho YY, Nakato J, Mizushige T, Kanamoto R, Tanida M, Akiduki S, Ohinata K. l-Ornithine stimulates growth hormone release in a manner dependent on the ghrelin system. Food Funct. 2017;8(6):2110–2114. https://doi.org/10.1039/c7fo00309a.
86. Taniguchi E, Hattori A, Kurogi K, Hishida Y, Watanabe F, Furuse M, Yasuo S. Temporal patterns of increased growth hormone secretion in mice after oral administration of L-ornithine: possible involvement of ghrelin receptors. J Vet Med Sci. 2022;84(9):1283–1287. https://doi.org/10.1292/jvms.22-0125.
87. Ito N, Seki S, Ueda F. Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions and Plasma IGF-1 Levels-A Randomized, Double-Blind, Placebo-Controlled Trial. Mar Drugs. 2018;16(12):482. https://doi.org/10.3390/md16120482.
88. Samengo G, Avik A, Fedor B, Whittaker D, Myung KH, Wehling-Henricks M, Tidball JG. Age-related loss of nitric oxide synthase in skeletal muscle causes reductions in calpain S-nitrosylation that increase myofibril degradation and sarcopenia. Aging Cell. 2012;11(6):1036–1045. https://doi.org/10.1111/acel.12003.
89. Tujioka K, Yamada T, Aoki M, Morishita K, Hayase K, Yokogoshi H. Dietary ornithine affects the tissue protein synthesis rate in young rats. J Nutr Sci Vitaminol. 2012;58(4):297–302. https://doi.org/10.3177/jnsv.58.297.
90. Suzumura S, Tujioka K, Yamada T, Yokogoshi H, Akiduki S, Hishida Y et al. Comparison of the Effects of Ornithine and Arginine on the Brain Protein Synthesis Rate in Young Rats. J Nutr Sci Vitaminol. 2015;61(5):417–421. https://doi.org/10.3177/jnsv.61.417.
91. Tujioka K, Yamada T, Abiko H, Aoki M, Morishita K, Hayase K, Yokogoshi H. Effect of dietary ornithine on the brain protein synthesis rate in hypophysectomized aged rats. J Nutr Sci Vitaminol. 2012;58(5):346–353. https://doi.org/10.3177/jnsv.58.346.
92. Gourmelen M, Donnadieu M, Schimpff RM, Lestradet H, Girard F. Effect of ornithine hydrochloride on growth hormone (HGH) plasma levels. Ann Endocrinol. 1972;33(5):526–528. Available at: https://pubmed.ncbi.nlm.nih.gov/4660448.
93. Evain-Brion D, Donnadieu M, Roger M, Job JC. Simultaneous study of somatotrophic and corticotrophic pituitary secretions during ornithine infusion test. Clin Endocrinol. 1982;17(2):119–122. https://doi.org/10.1111/j.1365-2265.1982.tb01571.x.
94. Lambert MI, Hefer JA, Millar RP, Macfarlane PW. Failure of commercial oral amino acid supplements to increase serum growth hormone concentrations in male body-builders. Int J Sport Nutr. 1993;3(3):298–305. https://doi.org/10.1123/ijsn.3.3.298.
95. Bucci L, Hickson JF Jr, Pivarnik JM, Wolinsky I, McMahon JC, Turner SD. Ornithine ingestion and growth hormone release in bodybuilders. Nutr Res. 1990;10(3):239–245. https://doi.org/10.1016/S0271-5317(05)80265-9.
96. Demura S, Yamada T, Yamaji S, Uchiyama M. L-ornithine hydrochloride ingestion increased carbohydrate oxidation but not lipid oxidation during submaximal endurance exercise following resistance exercise. Adv Biosci Biotechnol. 2013;4(1):81–88. http://doi.org/10.4236/abb.2013.41012.
97. Chromiak JA, Antonio J. Use of amino acids as growth hormone-releasing agents by athletes. Nutrition. 2002;18(7-8):657–661. https://doi.org/10.1016/s0899-9007(02)00807-9.
98. Elam RP, Hardin DH, Sutton RA, Hagen L. Effects of arginine and ornithine on strength, lean body mass and urinary hydroxyproline in adult males. J Sports Med Phys Fitness. 1989;29(1):52–56. Available at: https://pubmed.ncbi.nlm.nih.gov/2770269.
99. Zajac A, Poprzecki S, Zebrowska A, Chalimoniuk M, Langfort J. Arginine and ornithine supplementation increases growth hormone and insulinlike growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes. J Strength Cond Res. 2010;24(4):1082–1090. https://doi.org/10.1519/JSC.0b013e3181d321ff.
100. Lazebnik LB, Golovanova EV, Alekseenko SA, Bueverov AO, Plotnikova EY, Dolgushina AI et al. Russian Consensus on “Hyperammonemia in Adults”: The 2021 Version (in English). Experimental and Clinical Gastroenterology. 2021;(12):154–172. (In Russ.) https://doi.org/10.31146/1682-8658-ecg196-12-154-172.
101. Ivashkin VT, Drapkina OM, Maevskaya MV, Raikhelson KL, Okovityi SV, Zharkova MS et al. Clinical Guidelines of the Russian Society for the Study of the Liver, Russian Gastroenterological Association, Russian Society for the Prevention of Non-Communicable Diseases, Russian Association of Endocrinologists, Russian Scientific Medical Society of Therapists, National Society of Preventive Cardiology, Russian Association of Gerontologists and Geriatricians on Non-Alcoholic Fatty Liver Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2025;35(1):94–152. (In Russ.) https://doi.org/10.22416/1382-4376-2025-35-1-94-152.
102. Nadinskaia MYu, Maevskaya MV, Bakulin IG, Bessonova EN, Bueverov AO, Zharkova MS et al. Diagnostic and Prognostic Value of Hyperammonemia in Patients with Liver Cirrhosis, Hepatic Encephalopathy, and Sarcopenia (Experts’ Agreement). Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2024;34(1):85–100. (In Russ.) https://doi.org/10.22416/1382-4376-2024-34-1-85-100.
103. Wang ZX, Wang MY, Yang RX, Zhao ZH, Xin FZ, Li Y et al. Ammonia Scavenger Restores Liver and Muscle Injury in a Mouse Model of Nonalcoholic Steatohepatitis With Sarcopenic Obesity. Front Nutr. 2022;9:808497. https://doi.org/10.3389/fnut.2022.808497.
104. Pichon C, Nachit M, Gillard J, Vande Velde G, Lanthier N, Leclercq IA. Impact of L-ornithine L-aspartate on non-alcoholic steatohepatitisassociated hyperammonemia and muscle alterations. Front Nutr. 2022;9:1051157. https://doi.org/10.3389/fnut.2022.1051157.
105. Sas EI, Barnakova VA. Skeletal muscle hormone activity and non-alcoholic fatty liver disease. Medical Alphabet. 2020;(17):31–34. (In Russ.) https://doi.org/10.33667/2078-5631-2020-17-31-34.
106. Myazin RG. A study on the efficacy and safety of L-ornithine-L-aspartate in the treatment of chronic liver diseases complicated by the development of hyperammonemia and sarcopenia: results of a clinical trial. Therapy. 2024;10(8 Suppl.):223. (In Russ.) Available at: https://therapy-journal.ru/ru/archive/article/45928.
107. Pasha Y, Taylor-Robinson S, Leech R, Ribeiro I, Cook N, Crossey M, Marcinkowski H. PWE-091 L-ornithine l-aspartate in minimal hepatic encephalopathy: possible effects on the brain-muscle axis? Gut. 2018;67(Suppl. 1):A117-A118. https://doi.org/10.1136/gutjnl-2018-BSGAbstracts.233.
108. Ostrovskaya AS, Maevskaya MV, Loban KM, Zharkova MS, Shapka MP, Vasiltsova EA et al. Possibilities of treating sarcopenia in liver cirrhosis with hypoammonemic agents. Meditsinskiy Sovet. 2024;(15):51–60. (In Russ.) https://doi.org/10.21518/ms2024-383.
109. Walrand S. Role of ornithine α-ketoglutarate in sarcopenia. Nutr Clin Métab. 2009;23(3):137–148. https://doi.org/10.1016/j.nupar.2009.06.005.
110. Cai X, Yuan Y, Liao Z, Xing K, Zhu C, Xu Y et al. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ ADRB2 pathway. FASEB J. 2018;32(1):488–499. https://doi.org/10.1096/fj.201700670r.
111. Schuster H, Blanc MC, Genthon C, Thérond P, Bonnefont-Rousselot D, Le Tourneau A et al. Does dietary ornithine alpha-ketoglutarate supplementation protect the liver against ischemia-reperfusion injury? Clin Nutr. 2005;24(3):375–384. https://doi.org/10.1016/j.clnu.2004.12.002.
112. Nagaoka K, Mulla J, Cao K, Cheng Z, Liu D, Mueller W et al. The metabolite, alpha-ketoglutarate inhibits non-alcoholic fatty liver disease progression by targeting lipid metabolism. Liver Res. 2020;4(2):94–100. https://doi.org/10.1016/j.livres.2020.04.001.
113. Cynober L. Ornithine alpha-ketoglutarate as a potent precursor of arginine and nitric oxide: a new job for an old friend. J Nutr. 2004;134(10 Suppl.):2858S-2895S. https://doi.org/10.1093/jn/134.10.2858s.
114. Jeevanandam M, Holaday NJ, Petersen SR. Ornithine-alpha-ketoglutarate (OKG) supplementation is more effective than its component salts in traumatized rats. J Nutr. 1996;126(9):2141–2150. https://doi.org/10.1093/jn/126.9.2141.
115. Wernerman J, Hammarqvist F, von der Decken A, Vinnars E. Ornithinealpha-ketoglutarate improves skeletal muscle protein synthesis as assessed by ribosome analysis and nitrogen use after surgery. Ann Surg. 1987;206(5):674–680. https://doi.org/10.1097/00000658-198711000-00020.
116. Donati L, Ziegler F, Pongelli G, Signorini MS. Nutritional and clinical efficacy of ornithine alpha-ketoglutarate in severe burn patients. Clin Nutr. 1999;18(5):307–311. Available at: https://pubmed.ncbi.nlm.nih.gov/10601539.
117. Wernerman J, Hammarkvist F, Ali MR, Vinnars E. Glutamine and ornithinealpha-ketoglutarate but not branched-chain amino acids reduce the loss of muscle glutamine after surgical trauma. Metabolism. 1989;38(Suppl. 1):63–66. https://doi.org/10.1016/0026-0495(89)90144-3.
118. Brocker P, Vellas B, Albarede JL, Poynard T. A two-centre, randomized, double-blind trial of ornithine oxoglutarate in 194 elderly, ambulatory, convalescent subjects. Age Ageing. 1994;23(4):303–306. https://doi.org/10.1093/ageing/23.4.303.
Review
For citations:
Prikhodko VA, Okovityi SV. L-Ornithine salts as somatotropic axis modulators for the correction of sarcopenia in chronic liver disease. Meditsinskiy sovet = Medical Council. 2025;(8):80-93. (In Russ.) https://doi.org/10.21518/ms2025-223