Питание ребенка как фактор, регулирующий взаимодействие оси «микробиота – кишечник – мозг»
https://doi.org/10.21518/ms2025-250
Аннотация
Микробиом кишечника играет центральную роль в развивающемся организме, являясь основополагающей частью двунаправленных функциональных осей. Существует перекрестное взаимодействие между составом микробиома кишечника и развитием иммунной системы, метаболизмом, нейрогенезом, целостностью желудочно-кишечного тракта и многими другими процессами. Активно обсуждаются механизмы, посредством которых осуществляется данное влияние. Было обнаружено, что микробиота кишечника взаимодействует с мозгом через ось «микробиота – кишечник – мозг», регулируя различные физиологические процессы. Считается, что микробиота кишечника регулирует развитие нервной системы по 3 направлениям: иммунный путь, нейронный путь и эндокринно-системный путь, которые пересекаются и взаимодействуют друг с другом. Кишечный микробиом – динамически видоизменяющаяся система, паттерн развития которой имеет определенные закономерности. В период внутриутробного развития формирование микробиома происходит параллельно со сложным, генетически детерминированным процессом нейронтогенеза. Новые исследования подтверждают активное влияние микробиома кишечника и его метаболитов на нервно-психическое развитие детей. Однако гомеостаз в системе «микробиота – кишечник – мозг» может быть нарушен, что повышает риск развития нейропсихических расстройств, включая расстройства аутистического спектра, синдром дефицита внимания и гиперактивности. На разнообразие и численность бактериальной колонизации оказывают влияние ряд факторов, в том числе питание младенца. Справедливо большое внимание уделяется роли конкретных питательных веществ в развитии нервной системы детей раннего возраста. Своевременная дотация критически важных компонентов пищи является основанием для разработки подходов, обеспечивающих профилактику целого ряда заболеваний нервной системы. Учитывая тот факт, что показатели грудного вскармливания все еще остаются ниже желаемых значений, необходимо уделить особое внимание компонентам искусственных смесей, влияющих на здоровье младенцев.
Об авторах
И. Н. ЗахароваРоссия
Захарова Ирина Николаевна - д.м.н., профессор, заслуженный врач Российской Федерации, заведующая кафедрой педиатрии имени Г.Н. Сперанского.
125993, Москва, ул. Баррикадная, д. 2/1, стр. 1
Я. В. Оробинская
Россия
Оробинская Яна Владимировна - ассистент кафедры педиатрии имени академика Г.Н. Сперанского.
125993, Москва, ул. Баррикадная, д. 2/1, стр. 1
В. Д. Чурилова
Россия
Чурилова Виктория Дмитриевна - аспирант кафедры педиатрии имени академика Г.Н. Сперанского.
125993, Москва, ул. Баррикадная, д. 2/1, стр. 1
Е. С. Киселева
Россия
Киселева Елена Сергеевна - к.м.н., научный советник.
127247, Москва, Дмитровское ш., д. 100, стр. 2, оф. 3298
Список литературы
1. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787.
2. Kim H, Sitarik AR, Woodcroft K, Johnson CC, Zoratti E. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr Allergy Asthma Rep. 2019;19(4):22. https://doi.org/10.1007/s11882-019-0851-9.
3. Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol. 2018;26(1):16–32. https://doi.org/10.1016/j.tim.2017.07.008.
4. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. https://doi.org/10.1126/scitranslmed.3008599.
5. Rautava S, Collado MC, Salminen S, Isolauri E. Probiotics modulate host-microbe interaction in the placenta and fetal gut: a randomized, double-blind, placebo-controlled trial. Neonatology. 2012;102(3):178–184. https://doi.org/10.1159/000339182.
6. Jiménez E, Fernández L, Marín ML, Martín R, Odriozola JM, Nueno-Palop C et al. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol. 2005;51(4):270–274. https://doi.org/10.1007/s00284-005-0020-3.
7. Verstraelen H, Vilchez-Vargas R, Desimpel F, Jauregui R, Vankeirsbilck N, Weyers S et al. Characterisation of the human uterine microbiome in non-pregnant women through deep sequencing of the V1-2 region of the 16S rRNA gene. Peer J. 2016;4:e1602. https://doi.org/10.7717/peerj.1602.
8. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–394. https://doi.org/10.1503/cmaj.121189.
9. Jeong S. Factors influencing development of the infant microbiota: from prenatal period to early infancy. Clin Exp Pediatr. 2022;65(9):439–447. https://doi.org/10.3345/cep.2021.00955.
10. Guittar J, Shade A, Litchman E. Trait-based community assembly and succession of the infant gut microbiome. Nat Commun. 2019;10(1):512. https://doi.org/10.1038/s41467-019-08377-w.
11. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975. https://doi.org/10.1073/pnas.1002601107.
12. Shin H, Pei Z, Martinez KA 2nd, Rivera-Vinas JI, Mendez K, Cavallin H, Dominguez-Bello MG. The first microbial environment of infants born by C-section: the operating room microbes. Microbiome. 2015;3:59. https://doi.org/10.1186/s40168-015-0126-1.
13. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17(6):852. https://doi.org/10.1016/j.chom.2015.05.012.
14. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. https://doi.org/10.1038/nature11053.
15. Dunn AB, Jordan S, Baker BJ, Carlson NS. The Maternal Infant Microbiome: Considerations for Labor and Birth. MCN Am J Matern Child Nurs. 2017;42(6):318–325. https://doi.org/10.1097/NMC.0000000000000373.
16. Bailey SR, Field N, Townsend CL, Rodger AJ, Brocklehurst P. Antibiotic prophylaxis for women undergoing caesarean section and infant health. BJOG. 2016;123(6):875–876. https://doi.org/10.1111/1471-0528.13701.
17. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. https://doi.org/10.1126/scitranslmed.aad7121.
18. Mukhopadhya I, Segal JP, Carding SR, Hart AL, Hold GL. The gut virome: the ‘missing link’ between gut bacteria and host immunity? Therap Adv Gastroenterol. 2019;12:1756284819836620. https://doi.org/10.1177/1756284819836620.
19. Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016;123(6):983–993. https://doi.org/10.1111/1471-0528.13601.
20. Mazzola G, Murphy K, Ross RP, Di Gioia D, Biavati B, Corvaglia LT et al. Early Gut Microbiota Perturbations Following Intrapartum Antibiotic Prophylaxis to Prevent Group B Streptococcal Disease. PLoS ONE. 2016;11(6):e0157527. https://doi.org/10.1371/journal.pone.0157527.
21. Zwittink RD, Renes IB, van Lingen RA, van Zoeren-Grobben D, Konstanti P, Norbruis OF et al. Association between duration of intravenous antibiotic administration and early-life microbiota development in late-preterm infants. Eur J Clin Microbiol Infect Dis. 2018;37(3):475–483. https://doi.org/10.1007/s10096-018-3193-y.
22. Martin R, Makino H, Cetinyurek Yavuz A, Ben-Amor K, Roelofs M, Ishikawa E et al. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota. PLoS ONE. 2016;11(6):e0158498. https://doi.org/10.1371/journal.pone.0158498.
23. Frederick AC, Busen NH, Engebretson JC, Hurst NM, Schneider KM. Exploring the skin-to-skin contact experience during cesarean section. J Am Assoc Nurse Pract. 2016;28(1):31–38. https://doi.org/10.1002/2327-6924.12229.
24. Toscano M, De Grandi R, Peroni DG, Grossi E, Facchin V, Comberiati P, Drago L. Impact of delivery mode on the colostrum microbiota composition. BMC Microbiol. 2017;17(1):205. https://doi.org/10.1186/s12866-017-1109-0.
25. Nuzzi G, Trambusti I, DI Cicco ME, Peroni DG. Breast milk: more than just nutrition! Minerva Pediatr. 2021;73(2):111–114. https://doi.org/10.23736/S2724-5276.21.06223-X.
26. Moossavi S, Azad MB. Origins of human milk microbiota: new evidence and arising questions. Gut Microbes. 2020;12(1):1667722. https://doi.org/10.1080/19490976.2019.1667722.
27. Mantziari A, Rautava S. Factors influencing the microbial composition of human milk. Semin Perinatol. 2021;45(8):151507 https://doi.org/10.1016/j.semperi.2021.151507.
28. Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front Immunol. 2021;12:683022. https://doi.org/10.3389/fimmu.2021.683022.
29. Fehr K, Moossavi S, Sbihi H, Boutin RCT, Bode L, Robertson B et al. Breastmilk feeding practices are associated with the co-occurrence of bacteria in mothers’ milk and the infant gut: the CHILD cohort study. Cell Host Microbe. 2020;28(2):285–297. https://doi.org/10.1016/j.chom.2020.06.009.
30. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. 2013;60(1):49–74. https://doi.org/10.1016/j.pcl.2012.10.002.
31. Tu A, Ma Q, Bai H, Du Z. A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS. Food Chem. 2017;221:555–567. https://doi.org/10.1016/j.foodchem.2016.11.139.
32. Фурцев ВИ. Грудное вскармливание: состав и свойства грудного молока (сообщение 1). Сибирское медицинское обозрение. 2012;(2):91–96. Режим доступа: https://elibrary.ru/pabggb.
33. Gao X, McMahon RJ, Woo JG, Davidson BS, Morrow AL, Zhang Q. Temporal changes in milk proteomes reveal developing milk functions. J Proteome Res. 2012;11(7):3897–3907. https://doi.org/10.1021/pr3004002.
34. Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA et al. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res. 2024;202(1):56–72. https://doi.org/10.1007/s12011-023-03658-4.
35. Hoces D, Arnoldini M, Diard M, Loverdo C, Slack E. Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology. 2020;159(1):52–62. https://doi.org/10.1111/imm.13156.
36. Zheng W, Zhao W, Wu M, Song X, Caro F, Sun X et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature. 2020;577(7791):543–548. https://doi.org/10.1038/s41586-019-1898-4.
37. Nasser R, Stephen AM, Goh YK, Clandinin MT. The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in Saskatoon, Canada. Int Breastfeed J. 2010;5:3. https://doi.org/10.1186/1746-4358-5-3.
38. Lee H, Padhi E, Hasegawa Y, Larke J, Parenti M, Wang A, Hernell O, Lönnerdal B, Slupsky C. Compositional dynamics of the milk fat globule and its role in infant development. Front Pediatr. 2018;6:313. https://doi.org/10.3389/fped.2018.00313.
39. Bobiński R, Bobińska J. Fatty acids of human milk – a review. Int J Vitam Nutr Res. 2022;92(3-4):280–291. https://doi.org/10.1024/0300-9831/a000651.
40. Moossavi S, Atakora F, Miliku K, Sepehri S, Robertson B, Duan QL et al. Integrated analysis of human milk microbiota with oligosaccharides and fatty acids in the child cohort. Front Nutr. 2019;6:58. https://doi.org/10.3389/fnut.2019.00058.
41. Stam J, Sauer PJ, Boehm G. Can we define an infant’s need from the composition of human milk? Am J Clin Nutr. 2013;98(2):521S–528S. https://doi.org/10.3945/ajcn.112.044370.
42. Walsh C, Lane JA, van Sinderen D, Hickey RM. Human milk oligosaccharides: Shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074. https://doi.org/10.1016/j.jff.2020.104074.
43. Jantscher-Krenn E, Bode L. Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr. 2012;64(1):83–99. Available at: https://pubmed.ncbi.nlm.nih.gov/22350049/.
44. Triantis V, Bode L, van Neerven RJJ. Immunological Effects of Human Milk Oligosaccharides. Front Pediatr. 2018;6:190. https://doi.org/10.3389/fped.2018.00190.
45. Vandenplas Y, Analitis A, Tziouvara C, Kountzoglou A, Drakou A, Tsouvalas M et al. Safety of a New Synbiotic Starter Formula. Pediatr Gastroenterol Hepatol Nutr. 2017;20(3):167–177. https://doi.org/10.5223/pghn.2017.20.3.167.
46. Sodhi CP, Wipf P, Yamaguchi Y, Fulton WB, Kovler M, Niño DF et al. The human milk oligosaccharides 2’-fucosyllactose and 6’-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling. Pediatr Res. 2021;89(1):91–101. https://doi.org/10.1038/s41390-020-0852-3.
47. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209. Available at: https://pubmed.ncbi.nlm.nih.gov/25830558/.
48. Laursen MF. Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. Ann Nutr Metab. 2021;77(Suppl. 3):21–34. https://doi.org/10.1159/000517912.
49. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol. 2020;11:25. https://doi.org/10.3389/fendo.2020.00025.
50. Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients. 2021;13(6):2099. https://doi.org/10.3390/nu13062099.
51. Naspolini NF, Schüroff PA, Figueiredo MJ, Sbardellotto GE, Ferreira FR, Fatori D et al. The Gut Microbiome in the First One Thousand Days of Neurodevelopment: A Systematic Review from the Microbiome Perspective. Microorganisms. 2024;12(3):424. https://doi.org/10.3390/microorganisms12030424.
52. Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T et al. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients. 2021;13(1):199. https://doi.org/10.3390/nu13010199.
53. Мутовин ГР, Жилина СС, Умаханова ЗР. Нейроонтогенез и его нарушения. Детская больница. 2009;(2):36–43. Режим доступа: https://rdkb.ru/files/file224.pdf.
54. Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr. 2018;107(8):1310–1321. https://doi.org/10.1111/apa.14287.
55. Hadders-Algra M. Effect of long-chain polyunsaturated fatty acid supplementation on neurodevelopmental outcome in full-term infants. Nutrients. 2010;2(8):790–804. https://doi.org/10.3390/nu2080790.
56. Сидорова ИС, Никитина НА, Унанян АЛ, Агеев МБ. Развитие головного мозга плода и влияние пренатальных повреждающих факторов на основные этапы нейрогенеза. Российский вестник акушера-гинеколога. 2022;22(1):35–44. https://doi.org/10.17116/rosakush20222201135.
57. Tamnes CK, Herting MM, Goddings AL, Meuwese R, Blakemore SJ, Dahl RE et al. Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness. J Neurosci. 2017;37(12):3402–3412. https://doi.org/10.1523/JNEUROSCI.3302-16.2017.
58. Huff DS. Developmental anatomy and anomalies of the gastrointestinal tract, with involvement in major malformative syndromes. In: Russo P, Ruchelli E, Piccoli D (eds). Pathology of Pediatric Gastrointestinal and Liver Disease. New York: Springer; 2004, pp. 3–37. Available at: https://link.springer.com/book/10.1007/978-3-031-62589-3.
59. Hao MM, Foong JP, Bornstein JC, Li ZL, Vanden Berghe P, Boesmans W. Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol. 2016;417(2):168–181. https://doi.org/10.1016/j.ydbio.2016.05.030.
60. Boudry G, Charton E, Le Huerou-Luron I, Ferret-Bernard S, Le Gall S, Even S, Blat S. The Relationship Between Breast Milk Components and the Infant Gut Microbiota. Front Nutr. 2021;8:629740. https://doi.org/10.3389/fnut.2021.629740.
61. Jasani B, Simmer K, Patole SK, Rao SC. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev. 2017;3(3):CD000376. https://doi.org/10.1002/14651858.CD000376.pub4.
62. Zhuang J, Zhang Y, Shu H, Zhang S, Zhao W, Ward N, Wang J. Phosphatidylserine in the Nervous System: Cytoplasmic Regulator of the AKT and PKC Signaling Pathways and Extracellular “Eat-Me” Signal in Microglial Phagocytosis. Mol Neurobiol. 2023;60(2):1050–1066. https://doi.org/10.1007/s12035-022-03133-6.
63. Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr. 2018;107(8):1310–1321. https://doi.org/10.1111/apa.14287.
64. Xie SH, Li H, Jiang JJ, Quan Y, Zhang HY. Multi-Omics Interpretation of Anti-Aging Mechanisms for ω-3 Fatty Acids. Genes. 2021;12(11):1691. https://doi.org/10.3390/genes12111691.
65. Fadó R, Molins A, Rojas R, Casals N. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients. 2022;14(19):4137. https://doi.org/10.3390/nu14194137.
66. Kim HY, Huang BX, Spector AA. Molecular and Signaling Mechanisms for Docosahexaenoic Acid-Derived Neurodevelopment and Neuroprotection. Int J Mol Sci. 2022;23(9):4635. https://doi.org/10.3390/ijms23094635.
67. Rohrbach S. Effects of dietary polyunsaturated fatty acids on mitochondria. Curr Pharm Des. 2009;15(36):4103–4116. https://doi.org/10.2174/138161209789909692.
68. Синякин ИА, Дробяскина КА, Баталова ТА. Биологические эффекты жирных кислот и их метаболитов в ЦНС. Научное обозрение. Медицинские науки. 2023;(2):73–78. Режим доступа: https://science-medicine.ru/ru/article/view?id=1333.
69. Sinclair AJ. Docosahexaenoic acid and the brain – what is its role? Asia Pac J Clin Nutr. 2019;28(4):675–688. https://doi.org/10.6133/apjcn.201912_28(4).0002.
70. Rey C, Delpech JC, Madore C, Nadjar A, Greenhalgh AD, Amadieu C et al. Dietary n-3 long chain PUFA supplementation promotes a pro-resolving oxylipin profile in the brain. Brain Behav Immun. 2019;76:17–27. https://doi.org/10.1016/j.bbi.2018.07.025.
71. Miles EA, Childs CE, Calder PC. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients. 2021;13(1):247. https://doi.org/10.3390/nu13010247.
72. Sambra V, Echeverria F, Valenzuela A, Chouinard-Watkins R, Valenzuela R. Docosahexaenoic and Arachidonic Acids as Neuroprotective Nutrients throughout the Life Cycle. Nutrients. 2021;13(3):986. https://doi.org/10.3390/nu13030986.
73. Colombo J, Jill Shaddy D, Kerling EH, Gustafson KM, Carlson SE. Docosahexaenoic acid (DHA) and arachidonic acid (ARA) balance in developmental outcomes. Prostaglandins Leukot Essent Fatty Acids. 2017;121:52–56. https://doi.org/10.1016/j.plefa.2017.05.005.
74. Gazzolo D, Picone S, Gaiero A, Bellettato M, Montrone G, Riccobene F et al. Early Pediatric Benefit of Lutein for Maturing Eyes and Brain-An Overview. Nutrients. 2021;13(9):3239. https://doi.org/10.3390/nu13093239.
75. Jayakanthan M, Manochkumar J, Efferth T, Ramamoorthy S. Lutein, a versatile carotenoid: Insight on neuroprotective potential and recent advances. Phytomedicine. 2024;135:156185. https://doi.org/10.1016/j.phymed.2024.156185.
76. Maoka T. Carotenoids as natural functional pigments. J Nat Med. 2020;74(1):1–16. https://doi.org/10.1007/s11418-019-01364-x.
77. Frerichs NM, de Meij TGJ, Niemarkt HJ. Microbiome and its impact on fetal and neonatal brain development: current opinion in pediatrics. Curr Opin Clin Nutr Metab Care. 2024;27(3):297–303. https://doi.org/10.1097/MCO.0000000000001028.
78. Lu S, Zhao Q, Guan Y, Sun Z, Li W, Guo S, Zhang A. The communication mechanism of the gut-brain axis and its effect on central nervous system diseases: A systematic review. Biomed Pharmacother. 2024;178:117207. https://doi.org/10.1016/j.biopha.2024.117207.
79. Vicentini FA, Keenan CM, Wallace LE, Woods C, Cavin JB, Flockton AR et al. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome. 2021;9(1):210. https://doi.org/10.1186/s40168-021-01165-z.
80. Frerichs NM, de Meij TGJ, Niemarkt HJ. Microbiome and its impact on fetal and neonatal brain development: current opinion in pediatrics. Curr Opin Clin Nutr Metab Care. 2024;27(3):297–303. https://doi.org/10.1097/MCO.0000000000001028.
81. Iovene MR, Bombace F, Maresca R, Sapone A, Iardino P, Picardi A et al. Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders. Mycopathologia. 2017;182(3-4):349–363. https://doi.org/10.1007/s11046-016-0068-6.
82. Bull G, Shattock P, Whiteley P, Anderson R, Groundwater PW, Lough JW, Lees G. Indolyl-3-acryloylglycine (IAG) is a putative diagnostic urinary marker for autism spectrum disorders. Med Sci Monit. 2003;9(10):CR422-5. Available at: https://pubmed.ncbi.nlm.nih.gov/14523330/.
83. Dash S, Syed YA, Khan MR. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front Cell Dev Biol. 2022;10:880544. https://doi.org/10.3389/fcell.2022.880544.
84. Checa-Ros A, Jeréz-Calero A, Molina-Carballo A, Campoy C, Muñoz-Hoyos A. Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients. 2021;13(1):249. https://doi.org/10.3390/nu13010249.
85. Bundgaard-Nielsen C, Knudsen J, Leutscher PDC, Lauritsen MB, Nyegaard M, Hagstrøm S, Sørensen S. Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review. Gut Microbes. 2020;11(5):1172–1187. https://doi.org/10.1080/19490976.2020.1748258.
86. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463. https://doi.org/10.1016/j.cell.2013.11.024.
87. Verduci E, D’Elios S, Cerrato L, Comberiati P, Calvani M, Palazzo S et al. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients. 2019;11(8):1739. https://doi.org/10.3390/nu11081739.
88. Maathuis A, Havenaar R, He T, Bellmann S. Protein digestion and quality of goat and cow milk infant formula and human milk under simulated infant conditions. J. Pediatr Gastroenterol Nutr. 2017;65(6):661–666 https://doi.org/10.1097/MPG.0000000000001740.
89. Benjamin-van Aalst O, Dupont C, van der Zee L, Garssen J, Knipping K. Goat Milk Allergy and a Potential Role for Goat Milk in Cow’s Milk Allergy. Nutrients. 2024;16(15):2402. https://doi.org/10.3390/nu16152402.
90. Wang Y, Eastwood B, Yang Z, de Campo L, Knott R, Prosser C et al. Rheological and Structural Characterization of Acidified Skim Milks and Infant Formulae Made from Cow and Goat Milk. Food Hydrocolloids 2019;96:161–170. https://doi.org/10.1016/J.FOODHYD.2019.05.020.
91. Ruiz Morales FA, Castel Genís JM, Guerrero YM. Current status, challenges and the way forward for dairy goat production in Europe. Asian-Australas J Anim Sci. 2019;32(8):1256–1265. https://doi.org/10.5713/ajas.19.0327.
92. Gallier S, Tolenaars L, Prosser C. Whole Goat Milk as a Source of Fat and Milk Fat Globule Membrane in Infant Formula. Nutrients. 2020;12(11):3486. https://doi.org/10.3390/nu12113486.
93. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. 2007;85(6):1457–1464. https://doi.org/10.1093/ajcn/85.6.1457.
94. Koletzko B, Baker S, Cleghorn G, Neto UF, Gopalan S, Hernell O et al. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J Pediatr Gastroenterol Nutr. 2005;41(5):584–599. https://doi.org/10.1097/01.mpg.0000187817.38836.42.
95. Decsi T, Marosvölgyi T, Szabó É. Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life. 2023;13(6):1326. https://doi.org/10.3390/life13061326.
96. Hadley K, Ryan A, Forsyth S, Gautier S, Salem N. The Essentiality of Arachidonic Acid in Infant Development. Nutrients. 2016;8(4):216. https://doi.org/10.3390/nu8040216.
97. Davidov-Pardo G, Gumus CE, McClements DJ. Lutein-enriched emulsionbased delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chem. 2016;196:821–827. https://doi.org/10.1016/j.foodchem.2015.10.018.
98. Холодова ИН, Киселева ЕС, Нечаева ВВ. Влияние обогащенных детских молочных смесей на формирование центральной нервной системы и зрения ребенка. Лечащий врач. 2022;25(10):48–54. https://doi.org/10.51793/OS.2022.25.10.008.
99. Cerdó T, Nieto-Ruíz A, García-Santos JA, Rodríguez-Pöhnlein A, García- Ricobaraza M, Suárez A et al. Current Knowledge About the Impact of Maternal and Infant Nutrition on the Development of the Microbiota-Gut-Brain Axis. Annu Rev Nutr. 2023;43:251–278. https://doi.org/10.1146/annurev-nutr-061021-025355.
100. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018.
Рецензия
Для цитирования:
Захарова ИН, Оробинская ЯВ, Чурилова ВД, Киселева ЕС. Питание ребенка как фактор, регулирующий взаимодействие оси «микробиота – кишечник – мозг». Медицинский Совет. 2025;(11):100-113. https://doi.org/10.21518/ms2025-250
For citation:
Zakharova IN, Orobinskaya YV, Churilova VD, Kiseleva ES. Child nutrition as a factor regulating microbiota-gut-brain interactions. Meditsinskiy sovet = Medical Council. 2025;(11):100-113. (In Russ.) https://doi.org/10.21518/ms2025-250