Preview

Meditsinskiy sovet = Medical Council

Advanced search

Cerebral small vessel disease and multiple sclerosis: Similarities and differences

https://doi.org/10.21518/ms2025-222

Abstract

At the end of the last century, it was realized that not only damage to the gray matter of the brain causes cognitive decline, but also damage to the white matter can lead to a decrease in cognitive abilities of high severity, up to dementia. Modern neuroimaging has played a crucial role in the recognition of white matter pathology and its association with cognitive impairment. There are over 100 disorders (genetic and acquired) in which white matter dysfunction can potentially cause or contribute to dementia. The most common diseases of the white matter which predict cognitive impairment (white matter dementia) are cerebral small vessel disease and multiple sclerosis. At first glance, diseases have various triggering and pathogenetic factors. But modern science finds significant similarities between “purely vascular” and immune-mediated diseases. This paper provides a review of literature from the databases eLibrary.Ru, CyberLeninka, PubMed, Scopus, Embase, Medline, Web of Science, Cochrane and Google Scholar with the key terms “cognitive impairment”, “dementia”, “white matter diseases”, “cerebral small vessel disease”, “multiple sclerosis”. It has now been established that inflammation is an integral factor in the pathogenesis of cerebral small vessel disease, and the vascular factor is a constant participant in the pathogenesis of multiple sclerosis. These diseases may have similarities in clinical manifestation and neuroimaging. The review analyzes the available data on the coincidences and differences in the clinical picture and instrumental diagnosis of these diseases, which will allow for targeted prevention of disease progression and cognitive decline.

About the Authors

R. G. Esin
Kazan (Volga Region) Federal University; Kazan State Medical Academy – a branch of the Russian Medical Academy of Continuing Professional Education
Russian Federation

Radiy G. Esin - Dr. Sci. (Med.), Professor of the Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses, Kazan FU; Professor of the Department of Neurology, Kazan SMA – a branch of the Russian Medical Academy of Continuing Professional Education.

18, Kremlyovskaya St., Kazan, 420008; 36, Butlerov St., Kazan, 420012



E. A. Gorobets
Kazan (Volga Region) Federal University
Russian Federation

Elena A. Gorobets - Cand. Sci. (Phil.), Head of the Department of Applied and Experimental Linguistics, Leading Researcher of the Neurocognitive Research Laboratory, Head of the Center for Speech Pathology at University Clinic, Kazan FU.

18, Kremlyovskaya St., Kazan, 420008



E. F. Sharafeev
AIR MED LLC
Russian Federation

Emil F. Sharafeev - Radiology Doctor.

19a, Abzhalilov St., Kazan, 420061



A. I. Mashtakova
Kazan (Volga Region) Federal University
Russian Federation

Aleksandra I. Mashtakova - Clinical Resident of the Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses.

18, Kremlyovskaya St., Kazan, 420008



References

1. Rockwood K, Brown M, Merry H, Sketris I, Fisk J. Societal costs of vascular cognitive impairment in older adults. Stroke. 2023;3(6):1605–1609. https://doi.org/10.1161/01.str.0000017878.85274.44.

2. Hamilton OKL, Backhouse EV, Janssen E, Jochems ACC, Maher C, Ritakari TE et al. Cognitive impairment in sporadic cerebral small vessel disease: A systematic review and meta-analysis. Alzheimers Dement. 2021;17(4):665–685. https://doi.org/10.1002/alz.12221.

3. Frech FH, Li G, Juday T, Ding Y, Mattke S, Khachaturian A et al. Economic Impact of Progression from Mild Cognitive Impairment to Alzheimer Disease in the United States. J Prev Alzheimers Dis. 2024;11(4):983–991. https://doi.org/10.14283/jpad.2024.68.

4. Zhang LJ, Tian DC, Yang L, Shi K, Liu Y, Wang Y, Shi FD. White matter disease derived from vascular and demyelinating origins. Stroke Vasc Neurol. 2024;9(4):344–350. https://doi.org/10.1136/svn-2023-002791.

5. Fang M, Hu J, Weiss J, Knopman DS, Albert M, Windham BG et al. Lifetime risk and projected burden of dementia. Nat Med. 2025;31(3):772–776. https://doi.org/10.1038/s41591-024-03340-9.

6. Frahm HD, Stephan H, Stephan M. Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J Hirnforsch. 1982;23(4):375–389. Available at: https://pubmed.ncbi.nlm.nih.gov/7161477/.

7. Nonaka H, Akima M, Hatori T, Nagayama T, Zhang Z, Ihara F. The microvasculature of the cerebral white matter: arteries of the subcortical white matter. J Neuropathol Exp Neurol. 2003;62(2):154–161. https://doi.org/10.1093/jnen/62.2.154.

8. Vrselja Z, Brkic H, Curic G. Penetrating arteries of the cerebral white matter: The importance of vascular territories of delivering arteries and completeness of circle of Willis. Int J Stroke. 2016;11(3):NP36–NP37. https://doi.org/10.1177/1747493015616639.

9. Li TR, Li BL, Xu XR, Zhong J, Wang TS, Liu FQ. Association of white matter hyperintensities with cognitive decline and neurodegeneration. Front Aging Neurosci. 2024;16:1412735. https://doi.org/10.3389/fnagi.2024.1412735.

10. Jansma A, de Bresser J, Schoones JW, van Heemst D, Akintola AA. Sporadic cerebral small vessel disease and cognitive decline in healthy older adults: A systematic review and meta-analysis. J Cereb Blood Flow Metab. 2024;44(5):660–679. https://doi.org/10.1177/0271678X241235494.

11. Alifirova VM, Musina NF. Cognitive disorders in multiple sclerosis: correlations between neuropsychological, neurophysiological and neuroimaging characteristics. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2013;113(2-2):57–60. (In Russ.) Available at: https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova-2/2013/2-2/031997-72982013230.

12. Jellinger KA. Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms. J Neural Transm. 2024;131(8):871–899. https://doi.org/10.1007/s00702-024-02786-y.

13. Portaccio E, Amato MP. Cognitive Impairment in Multiple Sclerosis: An Update on Assessment and Management. NeuroSci. 2022;3(4):667–676. https://doi.org/10.3390/neurosci3040048.

14. Pelin AI, Shagieva ER, Khrabrov IS, Galieva RR, Faezova AA, Komissarova NV, Stoyanov MYu. Cognitive Impairment Features in Patients With Multiple Sclerosis. Innovative Medicine of Kuban. 2024;9(3):40–46. (In Russ.) https://doi.org/10.35401/2541-9897-2024-9-3-40-46.

15. Barulin AE, Kurushina OV, Rojas RS. Cognitive disorders in patients with multiple sclerosis. Medical Alphabet. 2019;2(19):24–28. (In Russ.) https://doi.org/10.33667/2078-5631-2019-2-19(394)-24-28.

16. Frohman EM, Racke MK, Raine CS. Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942–955. https://doi.org/10.1056/NEJMra052130.

17. Ortiz GG, Pacheco-Moisés FP, Macías-Islas MÁ, Flores-Alvarado LJ, MirelesRamírez MA, González-Renovato ED et al. Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 2014;45(8):687–697. https://doi.org/10.1016/j.arcmed.2014.11.013.

18. Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron. 2018;97(4):742–768. https://doi.org/10.1016/j.neuron.2018.01.021.

19. Jakimovski D, Topolski M, Kimura K, Pandya V, Weinstock-Guttman B, Zivadinov R. Decrease in Secondary Neck Vessels in Multiple Sclerosis: A 5-year Longitudinal Magnetic Resonance Angiography Study. Curr Neurovasc Res. 2019;16(3):215–223. https://doi.org/10.2174/1567202616666190612111127.

20. Murphy OC, Kwakyi O, Iftikhar M, Zafar S, Lambe J, Pellegrini N et al. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler. 2020;26(7):815–828. https://doi.org/10.1177/1352458519845116.

21. Brown RB, Traylor M, Burgess S, Sawcer S, Markus HS. Do Cerebral Small Vessel Disease and Multiple Sclerosis Share Common Mechanisms of White Matter Injury? Stroke. 2019;50(8):1968–1972. https://doi.org/10.1161/STROKEAHA.118.023649.

22. Wiseman S, Marlborough F, Doubal F, Webb DJ, Wardlaw J. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis. Cerebrovasc Dis. 2014;37(1):64–75. https://doi.org/10.1159/000356789.

23. Moussaddy A, Levy A, Strbian D, Sundararajan S, Berthelet F, Lanthier S. Inflammatory Cerebral Amyloid Angiopathy, Amyloid-β-Related Angiitis, and Primary Angiitis of the Central Nervous System: Similarities and Differences. Stroke. 2015;46(9):e210–e213. https://doi.org/10.1161/STROKEAHA.115.010024.

24. Kozberg MG, Perosa V, Gurol ME, van Veluw SJ. A practical approach to the management of cerebral amyloid angiopathy. Int J Stroke. 2021;16(4):356–369. https://doi.org/10.1177/1747493020974464.

25. Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol. 2004;55(2):250–256. https://doi.org/10.1002/ana.10810.

26. Chen D, Zhang C, Parikh N, Merkler AE, Navi BB, Fink ME et al. Association Between Systemic Amyloidosis and Intracranial Hemorrhage. Stroke. 2022;53(3):e92–e93. https://doi.org/10.1161/STROKEAHA.121.038451.

27. Wong SM, Jansen JFA, Zhang CE, Hoff EI, Staals J, van Oostenbrugge RJ, Backes WH. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology. 2019;92(15):e1669–e1677. https://doi.org/10.1212/WNL.0000000000007263.

28. Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the bloodbrain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke. 2003;34(3):806–812. https://doi.org/10.1161/01.STR.0000058480.77236.B3.

29. Rajani RM, Quick S, Ruigrok SR, Graham D, Harris SE, Verhaaren BFJ et al. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med. 2018;10(448):eaam9507. https://doi.org/10.1126/scitranslmed.aam9507.

30. Wardlaw JM, Debette S, Jokinen H, De Leeuw FE, Pantoni L, Chabriat H et al. ESO Guideline on covert cerebral small vessel disease. Eur Stroke J. 2021;6(2):CXI–CLXII. https://doi.org/10.1177/23969873211012132.

31. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–173. https://doi.org/10.1016/S14744422(17)30470-2.

32. Grueter BE, Schulz UG. Age-related cerebral white matter disease (leukoaraiosis): a review. Postgrad Med J. 2012;88(1036):79–87. https://doi.org/10.1136/postgradmedj-2011-130307.

33. Kobari M, Meyer JS, Ichijo M, Oravez WT. Leukoaraiosis: correlation of MR and CT findings with blood flow, atrophy, and cognition. AJNR Am J Neuroradiol. 1990;11(2):273–281. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC8334682/.

34. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–838. https://doi.org/10.1016/S1474-4422(13)70124-8.

35. Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw FE et al. Neuroimaging standards for research into small vessel diseaseadvances since 2013. Lancet Neurol. 2023;22(7):602–618. https://doi.org/10.1016/S1474-4422(23)00131-X.

36. Rovira À, Wattjes MP, Tintoré M, Tur C, Yousry TA, Sormani MP et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol. 2015;11(8):471–482. https://doi.org/10.1038/nrneurol.2015.106.

37. Geraldes R, Ciccarelli O, Barkhof F, De Stefano N, Enzinger C, Filippi M et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol. 2018;14(4):199–213. https://doi.org/10.1038/nrneurol.2018.39.

38. van der Flier WM, van Straaten EC, Barkhof F, Verdelho A, Madureira S, Pantoni L et al. Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study. Stroke. 2005;36(10):2116–2120. https://doi.org/10.1161/01.STR.0000179092.59909.42.

39. Sahraian MA, Radue EW, Haller S, Kappos L. Black holes in multiple sclerosis: definition, evolution, and clinical correlations. Acta Neurol Scand. 2010;122(1):1–8. https://doi.org/10.1111/j.1600-0404.2009.01221.x.

40. Paradise M, Crawford JD, Lam BCP, Wen W, Kochan NA, Makkar S et al. Association of Dilated Perivascular Spaces With Cognitive Decline and Incident Dementia. Neurology. 2021;96(11):e1501–e1511. https://doi.org/10.1212/WNL.0000000000011537.

41. Cotton F, Weiner HL, Jolesz FA, Guttmann CR. MRI contrast uptake in new lesions in relapsing-remitting MS followed at weekly intervals. Neurology. 2003;60(4):640–646. https://doi.org/10.1212/01.wnl.0000046587.83503.1e.

42. Davis M, Auh S, Riva M, Richert ND, Frank JA, McFarland HF, Bagnato F. Ring and nodular multiple sclerosis lesions: a retrospective natural history study. Neurology. 2010;74(10):851–856. https://doi.org/10.1212/WNL.0b013e3181d31df5.

43. Eijlers AJC, Dekker I, Steenwijk MD, Meijer KA, Hulst HE, Pouwels PJW et al. Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology. 2019;93(14):e1348–e1359. https://doi.org/10.1212/WNL.0000000000008198.

44. Eshaghi A, Marinescu RV, Young AL, Firth NC, Prados F, Jorge Cardoso M et al. Progression of regional grey matter atrophy in multiple sclerosis. Brain. 2018;141(6):1665–1677. https://doi.org/10.1093/brain/awy088.

45. Wattjes MP, Ciccarelli O, Reich DS, Banwell B, de Stefano N, Enzinger C et al. 2021 MAGNIMS-CMSC-NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. Lancet Neurol. 2021;20(8):653–670. https://doi.org/10.1016/S1474-4422(21)00095-8.

46. Ter Telgte A, Duering M. Cerebral Small Vessel Disease: Advancing Knowledge With Neuroimaging. Stroke. 2024;55(6):1686–1688. Available at: https://www.ahajournals.org/doi/epub/10.1161/STROKEAHA.123.044294.

47. Cosottini M, Roccatagliata L. Neuroimaging at 7 T: are we ready for clinical transition? Eur Radiol Exp. 2021;5(1):37. https://doi.org/10.1186/s41747021-00234-0.


Review

For citations:


Esin RG, Gorobets EA, Sharafeev EF, Mashtakova AI. Cerebral small vessel disease and multiple sclerosis: Similarities and differences. Meditsinskiy sovet = Medical Council. 2025;(12):22-29. (In Russ.) https://doi.org/10.21518/ms2025-222

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)