Insomnia is a significant factor in cognitive impairment: Literature review and clinical observation
https://doi.org/10.21518/ms2025-257
Abstract
The work presents an analysis of the current literature on the effect of insomnia on cognitive functions. The search was carried out using the databases of RSCI, Russian Medicine, Embase, Medline, Scopus, Web of Science, Google Scholar, using the keywords: insomnia, sleep disorder, cognitive functions, memory, functional MRI, treatment of insomnia, doxylamine. The search depth was 40 years. The consequences of sleep disorders include effects on chromosome telomeres, decreased neuron activation, and impaired brain connectivity. Insufficient sleep alters the activity of cortical neurons in areas responsible for cognitive functions, disrupts the functional connection between brain regions mediating executive functions, memory, and emotion regulation. Glymphatic clearance plays an important role in the pathogenesis of Alzheimer’s disease, as the vast majority of toxic metabolites are eliminated during sleep, and dementia is associated with sleep disorders along with age-related decreased aquaporin-4 function. The accumulation of toxic metabolites (including amyloid-β) begins at a young age and is associated with a shortening of sleep duration. Non-drug sleep improvement measures include behavioral correction: learning sleep habits, optimizing sleep conditions and improving sleep patterns, moderate physical activity during the day, and correcting environmental factors. In case of insomnia, central histamine H1 receptor blockers may be prescribed. Doxylamine is a drug used to treat nausea and vomiting in pregnant women, allergic rhinitis, and insomnia. Valocordin®-Doxylamine is a safe and effective over-the-counter medication that can benefit the patient with minimal side effects if used correctly.
About the Authors
R. G. EsinRussian Federation
Radiy G. Esin - Dr. Sci. (Med.), Professor of the Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses, Kazan (Volga Region) FU; Professor of the Department of Neurology, Kazan State Medical Academy – a branch of the RMACPE.
18, Kremlyovskaya St., Kazan, 420008; 36, Butlerov St., Kazan, 420012
A. I. Mashtakova
Russian Federation
Aleksandra I. Mashtakova - Clinical Resident of the Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses.
18, Kremlyovskaya St., Kazan, 420008
O. R. Esin
Russian Federation
Oleg R. Esin - Cand. Sci. (Med.), Associate Professor of the Department of Neurology with Psychiatry, Clinical Psychology and Medical Genetics Courses, Kazan (Volga Region) FUy; Neurologist, Otorhinolaryngology Clinic LLC.
18, Kremlyovskaya St., Kazan, 420008; 12, Daurskaya St., Kazan, 420059
L. R. Sakhapova
Russian Federation
Liliia R. Sakhapova - Cand. Sci. (Med.), Radiologist.
5, Isaev St., Kazan, 420039
References
1. Kendzerska T, Mollayeva T, Gershon AS, Leung RS, Hawker G, Tomlinson G. Untreated obstructive sleep apnea and the risk for serious long-term adverse outcomes: a systematic review. Sleep Med Rev. 2014;18(1):49–59. https://doi.org/10.1016/j.smrv.2013.01.003.
2. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1(4):233–243. https://doi.org/10.1016/j.sleh.2015.10.004.
3. Wang J, Wu J, Liu J, Meng Y, Li J, Zhou P et al. Prevalence of sleep disturbances and associated factors among Chinese residents: A web-based empirical survey of 2019. J Glob Health. 2023;13:04071. https://doi.org/10.7189/jogh.13.04071.
4. Nemkova SA. Current principles of comprehensive diagnosis and treatment of sleep disorders in children. Meditsinskiy Sovet. 2014;(14): 25–29. (In Russ.) Available at: https://www.med-sovet.pro/jour/article/view/1234.
5. Chaput JP, Dutil C, Sampasa-Kanyinga H. Sleeping hours: what is the ideal number and how does age impact this? Nat Sci Sleep. 2018;10:421–430. https://doi.org/10.2147/NSS.S163071.
6. Strygin KN, Poluektov MG. Current views on stress and the protective role of sleep. Meditsinskiy Sovet. 2015;(5):70–77. (In Russ.) Available at: https://www.med-sovet.pro/jour/article/view/175.
7. Cao Q, Xiang H, WangY, Liu F, Weng X, Xu F. Negative impact of insufficient sleep on the brain. Brain-Apparatus Commun J Bacomics. 2025;4(1). https://doi.org/10.1080/27706710.2025.2465538.
8. Ackermann K, Plomp R, Lao O, Middleton B, Revell VL, Skene DJ, Kayser M. Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans. Chronobiol Int. 2013;30(7):901–909. https://doi.org/10.3109/07420528.2013.784773.
9. Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26(2):117–126. https://doi.org/10.1093/sleep/26.2.117.
10. Dollish HK, Tsyglakova M, McClung CA. Circadian rhythms and mood disorders: Time to see the light. Neuron. 2024;112(1):25–40. https://doi.org/10.1016/j.neuron.2023.09.023.
11. Rosenwasser AM, Turek FW. Neurobiology of Circadian Rhythm Regulation. Sleep Med Clin. 2022;17(2):141–150. https://doi.org/10.1016/j.jsmc.2022.02.006.
12. Puchkova AN, Poluektov MG. Sleep as a biological rhythm: clinical aspects. Meditsinskiy Sovet. 2021;(2):56–61. (In Russ.) https://doi.org/10.21518/2079-701X-2021-2-56-61.
13. Frank MG. The Role of Glia in Sleep Regulation and Function. Handb Exp Pharmacol. 2019;253:83–96. https://doi.org/10.1007/164_2017_87.
14. Osum M, Serakinci N. Impact of circadian disruption on health; SIRT1 and Telomeres. DNA Repair. 2020;96:102993. https://doi.org/10.1016/j.dnarep.2020.102993.
15. Blackburn EH. Telomere states and cell fates. Nature. 2000;408(6808):53–56. https://doi.org/10.1038/35040500.
16. Grosbellet E, Zahn S, Arrivé M, Dumont S, Gourmelen S, Pévet P et al. Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEBj. 2015;29(12):4794–4803. https://doi.org/10.1096/fj.14-266817.
17. Wynchank D, Bijlenga D, Penninx BW, Lamers F, Beekman AT, Kooij JJS, Verhoeven JE. Delayed sleep-onset and biological age: late sleep-onset is associated with shorter telomere length. Sleep. 2019;42(10):zsz139. https://doi.org/10.1093/sleep/zsz139.
18. Mather KA, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. J Gerontol A Biol Sci Med Sci. 2011;66(2):202–213. https://doi.org/10.1093/gerona/glq180.
19. Ho MCW, Tabuchi M, Xie X, Brown MP, Luu S, Wang S et al. Sleep needdependent changes in functional connectivity facilitate transmission of homeostatic sleep drive. Curr Biol. 2022;32(22):4957–4966.e5. https://doi.org/10.1016/j.cub.2022.09.048.
20. Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC et al. GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci. 2019;22(1):106–119. https://doi.org/10.1038/s41593-018-0288-9.
21. Holub F, Petri R, Schiel J, Feige B, Rutter MK, Tamm S et al. Associations between insomnia symptoms and functional connectivity in the UK Biobank cohort (n = 29,423). J Sleep Res. 2023;32(2):e13790. https://doi.org/10.1111/jsr.13790.
22. Mazzotti DR. Multimodal integration of sleep electroencephalogram, brain imaging, and cognitive assessments: approaches using noisy clinical data. Sleep. 2024;47(2):zsad305. https://doi.org/10.1093/sleep/zsad305.
23. Hudson AN, Van Dongen HPA, Honn KA. Sleep deprivation, vigilant attention, and brain function: a review. Neuropsychopharmacology. 2020;45(1):21–30. https://doi.org/10.1038/s41386-019-0432-6.
24. Nechifor RE, Ciobanu D, Vonica CL, Popita C, Roman G, Bala C et al. Social jetlag and sleep deprivation are associated with altered activity in the reward-related brain areas: an exploratory resting-state fMRI study. Sleep Med. 2020;72:12–19. https://doi.org/10.1016/j.sleep.2020.03.018.
25. Aquino G, Schiel JE. Neuroimaging in insomnia: Review and reconsiderations. J Sleep Res. 2023;32(6):e14030. https://doi.org/10.1111/jsr.14030.
26. Son YD, Kang JM, Cho SJ, Lee JS, Hwang HY, Kang SG. fMRI brain activation in patients with insomnia disorder during a working memory task. Sleep Breath. 2018;22(2):487–493. https://doi.org/10.1007/s11325017-1575-5.
27. Yang N, Yuan S, Li C, Xiao W, Xie S, Li L et al. Diagnostic identification of chronic insomnia using ALFF and FC features of resting-state functional MRI and logistic regression approach. Sci Rep. 2023;13(1):406. https://doi.org/10.1038/s41598-022-24837-8.
28. Kim YB, Kim N, Lee JJ, Cho SE, Na KS, Kang SG. Brain reactivity using fMRI to insomnia stimuli in insomnia patients with discrepancy between subjective and objective sleep. Sci Rep. 2021;11(1):1592. https://doi.org/10.1038/s41598-021-81219-2.
29. Ding S, Gao L, Kukun H, Ai K, Zhao W, Xie C, Wang Y. Novel Neuroimaging Biomarker for Sleep Quality in Insomnia Disorder: A Hypothalamus Resting State Study. Front Neurosci. 2021;15:634984. https://doi.org/10.3389/fnins.2021.634984.
30. Liew SC, Aung T. Sleep deprivation and its association with diseases – a review. Sleep Med. 2021;77:192–204. https://doi.org/10.1016/j.sleep.2020.07.048.
31. Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25(1):117–129. https://doi.org/10.1055/s-2005-867080.
32. He D, Ren D, Guo Z, Jiang B. Insomnia disorder diagnosed by restingstate fMRI-based SVM classifier. Sleep Med. 2022;95:126–129. https://doi.org/10.1016/j.sleep.2022.04.024.
33. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner’s Guide. Neurochem Res. 2015;40(12):2583–2599. https://doi.org/10.1007/s11064-015-1581-6.
34. Plog BA, Nedergaard M. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. Annu Rev Pathol. 2018;13:379–394. https://doi.org/10.1146/annurev-pathol-051217-111018.
35. Iliff JJ, Lee H, Yu M, Feng T, Logan J, Nedergaard M, Benveniste H. Brain-wide pathway for waste clearance captured by contrastenhanced MRI. J Clin Invest. 2013;123(3):1299–1309. https://doi.org/10.1172/JCI67677.
36. Reddy OC, van der Werf YD. The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sci. 2020;10(11):868. https://doi.org/10.3390/brainsci10110868.
37. Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A. 2018;115(17):4483–4488. https://doi.org/10.1073/pnas.1721694115.
38. Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. 5th ed. Oxford University Press; 2012. 1161 p. Available at: https://books.google.by/books?id=hryvBAAAQBAJ.
39. Lowe CJ, Safati A, Hall PA. The neurocognitive consequences of sleep restriction: A meta-analytic review. Neurosci Biobehav Rev. 2017;80:586–604. https://doi.org/10.1016/j.neubiorev.2017.07.010.
40. Wickens CD, Hutchins SD, Laux L, Sebok A. The Impact of Sleep Disruption on Complex Cognitive Tasks: A Meta-Analysis. Hum Factors. 2015;57(6):930–946. https://doi.org/10.1177/0018720815571935.
41. Lo JC, Groeger JA, Cheng GH, Dijk DJ, Chee MW. Self-reported sleep duration and cognitive performance in older adults: a systematic review and meta-analysis. Sleep Med. 2016;17:87–98. https://doi.org/10.1016/j.sleep.2015.08.021.
42. Chaput JP, Dutil C, Featherstone R, Ross R, Giangregorio L, Saunders TJ et al. Sleep timing, sleep consistency, and health in adults: a systematic review. Appl Physiol Nutr Metab. 2020;45(10 Suppl. 2):S232–S247. https://doi.org/10.1139/apnm-2020-0032.
43. Phillips AJK, Clerx WM, O’Brien CS, Sano A, Barger LK, Picard RW et al. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep. 2017;7(1):3216. https://doi.org/10.1038/s41598-017-03171-4.
44. Whiting WL, Murdock KK. Emerging adults’ sleep patterns and attentional capture: the pivotal role of consistency. Cogn Process. 2016;17(2):155–162. https://doi.org/10.1007/s10339-016-0754-9.
45. Zimmerman ME, Benasi G, Hale C, Yeung LK, Cochran J, Brickman AM, St-Onge MP. The effects of insufficient sleep and adequate sleep on cognitive function in healthy adults. Sleep Health. 2024;10(2):229–236. https://doi.org/10.1016/j.sleh.2023.11.011.
46. Jiang F, VanDyke RD, Zhang J, Li F, Gozal D, Shen X. Effect of chronic sleep restriction on sleepiness and working memory in adolescents and young adults. J Clin Exp Neuropsychol. 2011;33(8):892–900. https://doi.org/10.1080/13803395.2011.570252.
47. Alsameen M, DiFrancesco MW, Drummond SPA, Franzen PL, Beebe DW. Neuronal activation and performance changes in working memory induced by chronic sleep restriction in adolescents. J Sleep Res. 2021;30(5):e13304. https://doi.org/10.1111/jsr.13304.
48. Santisteban JA, Brown TG, Ouimet MC, Gruber R. Cumulative mild partial sleep deprivation negatively impacts working memory capacity but not sustained attention, response inhibition, or decision making: a randomized controlled trial. Sleep Health. 2019;5(1):101–108. https://doi.org/10.1016/j.sleh.2018.09.007.
49. Mehta B, Kamble PH, Gadhvi M, Kaushal A. Correlation of selfreported sleep duration with working memory of adolescents. J Family Med Prim Care. 2020;9(8):4196–4199. https://doi.org/10.4103/jfmpc.jfmpc_600_20.
50. Hudson AN, Hansen DA, Hinson JM, Whitney P, Layton ME, DePriest DM et al. Speed/accuracy trade-off in the effects of acute total sleep deprivation on a sustained attention and response inhibition task. Chronobiol Int. 2020;37(9-10):1441–1444. https://doi.org/10.1080/07420528.2020.1811718.
51. Fang Z, Liu X, Wang C, Cao J, Peng Y, Lv Y. Insomnia attenuates response inhibition: Evidence from Go/NoGo research. Sleep Med. 2022;100:518–533. https://doi.org/10.1016/j.sleep.2022.09.007.
52. Jin X, Ye E, Qi J, Wang L, Lei Y, Chen P et al. Recovery Sleep Reverses Impaired Response Inhibition due to Sleep Restriction: Evidence from a Visual Event Related Potentials Study. PLoS ONE. 2015;10(12): e0142361. https://doi.org/10.1371/journal.pone.0142361.
53. Olaithe M, Bucks RS, Hillman DR, Eastwood PR. Cognitive deficits in obstructive sleep apnea: Insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation. Sleep Med Rev. 2018;38:39–49. https://doi.org/10.1016/j.smrv.2017.03.005.
54. Xin Q, Yuan RK, Zitting KM, Wang W, Purcell SM, Vujovic N et al. Impact of chronic sleep restriction on sleep continuity, sleep structure, and neurobehavioral performance. Sleep. 2022;45(7):zsac046. https://doi.org/10.1093/sleep/zsac046.
55. Smith MG, Wusk GC, Nasrini J, Baskin P, Dinges DF, Roma PG, Basner M. Effects of six weeks of chronic sleep restriction with weekend recovery on cognitive performance and wellbeing in high-performing adults. Sleep. 2021;44(8):zsab051. https://doi.org/10.1093/sleep/zsab051.
56. Koa TB, Lo JC. Neurobehavioural functions during variable and stable short sleep schedules. J Sleep Res. 2021;30(4):e13252. https://doi.org/10.1111/jsr.13252.
57. Casement MD, Broussard JL, Mullington JM, Press DZ. The contribution of sleep to improvements in working memory scanning speed: a study of prolonged sleep restriction. Biol Psychol. 2006;72(2):208–212. https://doi.org/10.1016/j.biopsycho.2005.11.002.
58. Albakri U, Drotos E, Meertens R. Sleep Health Promotion Interventions and Their Effectiveness: An Umbrella Review. Int J Environ Res Public Health. 2021;18(11):5533. https://doi.org/10.3390/ijerph18115533.
59. Xie W, Lu D, Liu S, Li J, Li R. The optimal exercise intervention for sleep quality in adults: A systematic review and network metaanalysis. Prev Med. 2024;183:107955. https://doi.org/10.1016/j.ypmed.2024.107955.
60. DuBose JR, Hadi K. Improving inpatient environments to support patient sleep. Int J Qual Health Care. 2016;28(5):540–553. https://doi.org/10.1093/intqhc/mzw079.
61. Palagini L, Hertenstein E, Riemann D, Nissen C. Sleep, insomnia and mental health. J Sleep Res. 2022;31(4):e13628. https://doi.org/10.1111/jsr.13628.
62. Kyle SD, Siriwardena AN, Espie CA, Yang Y, Petrou S, Ogburn E et al. Clinical and cost-effectiveness of nurse-delivered sleep restriction therapy for insomnia in primary care (HABIT): a pragmatic, superiority, open-label, randomised controlled trial. Lancet. 2023;402(10406): 975–987. https://doi.org/10.1016/S0140-6736(23)00683-9.
63. Poluektov MG, Akarachkova ES, Dovgan EV, Kotova OV, Demidova TYu, Klimenko AA et al. Management of patients with insomnia and polymorbidity: expert consensus. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2023;123(5-2):49–57. (In Russ.) https://doi.org/10.17116/jnevro202312305249.
64. Abad VC, Guilleminault C. Insomnia in Elderly Patients: Recommendations for Pharmacological Management. Drugs Aging. 2018;35(9):791–817. https://doi.org/10.1007/s40266-018-0569-8.
65. Persaud N, Chin J, Walker M. Should doxylamine-pyridoxine be used for nausea and vomiting of pregnancy? J Obstet Gynaecol Can. 2014;36(4):343–348. https://doi.org/10.1016/S1701-2163(15)30611-3.
66. Allison M, Hale C. A Phase I Study of the Pharmacokinetics and Pharmacodynamics of Intranasal Doxylamine in Subjects with Chronic Intermittent Sleep Impairment. Drugs R D. 2018;18(2):129–136. https://doi.org/10.1007/s40268-018-0232-1.
67. Shiroishi M, Kobayashi T. Structural Analysis of the Histamine H1 Receptor. Handb Exp Pharmacol. 2017;241:21–30. https://doi.org/10.1007/164_2016_10.
68. Romanov DV, Iuzbashian PG. Acute insomnia: experience of treatment with doxylamine. Meditsinskiy Sovet. 2020;(21):267–273. (In Russ.) https://doi.org/10.21518/2079-701X-2020-21-267-273.
69. Burchakov DI, Tardov MV. Insomnia in general practice: the role of doxylamine. Meditsinskiy Sovet. 2020;(2):45–53. (In Russ.) https://doi.org/10.21518/2079-701X-2020-2-45-53.
70. Azimova YE, Ischenko KA. Sleep disturbances in alcoholic disease. Diagnostics and therapy. Meditsinskiy Sovet. 2017;(1S):65–70. (In Russ.) https://doi.org/10.21518/2079-701X-2017-0-65-70.
71. Esin RG, Esin OR, Erkinova DE. Insomnia is an factor aggravaging the course of cardiovascular diseases: modern understanding of the problem and ways of solution. Meditsinskiy Sovet. 2024;18(13):85–91. (In Russ.) https://doi.org/10.21518/ms2024-292.
72. Vorobieva OV. Acute (adaptation) insomnia: therapeutic dilemma. Meditsinskiy Sovet. 2016;(9):23–27. (In Russ.) https://doi.org/10.21518/ 2079-701X-2016-9-23-27.
73. Akarachkova ES, Kotova OV, Ryabokon IV. Depression and insomnia in patients with CAD. Meditsinskiy Sovet. 2014;(11):50–55. (In Russ.) Available at: https://www.med-sovet.pro/jour/article/view/668.
74. Tikhomirova OV. Stress and sleep: Neurobiological aspects and modern options of insomnia therapy. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2025;125(5-2):14–21. (In Russ.) https://doi.org/10.17116/jnevro202512505214.
Review
For citations:
Esin RG, Mashtakova AI, Esin OR, Sakhapova LR. Insomnia is a significant factor in cognitive impairment: Literature review and clinical observation. Meditsinskiy sovet = Medical Council. 2025;(12):55-63. (In Russ.) https://doi.org/10.21518/ms2025-257