Effects of stress on the human body
https://doi.org/10.21518/ms2025-273
Abstract
Stress is a psychophysiological response generated by the body due to the undesirable, challenging and difficult circumstances or stressors. The stress effects on the nervous system have been known for quite a long time. Numerous studies confirm the adverse effects of stress on the human brain, on the function of the immune, cardiovascular, digestive, endocrine and other body systems. Acute stress refers to a short-term and adaptive state. In contrast, chronic stress is a long-lasting condition known to be related to maladaptive response, implying harmful effects on the body. There are many systems in the body that regulate the level of stress, the main of them include the hypothalamic-pituitary-adrenal axis (HPA-Axis) and the autonomic nervous system (ANS). The HPA axis reacts to stressors by secreting cortisol, a chemical that prepares the body for fight or flight response and is a significant biomarker for stress. Cortisol is mostly associated with psychological stress. The ANS also contributes to acute and chronic stress generation and regulation. It regulates bodily functions in response to external and internal stimuli (maintenance of body homeostasis including temperature, blood sugar levels, etc.). Adrenaline, noradrenaline, and acetylcholine are the prime neurotransmitters released by the sympathetic and parasympathetic divisions of the ANS. Unlike the transient secretion of stress hormones during acute stress, the long-term elevation of catecholamines and glucocorticoids causes not only mental disorders such as anxiety disorder and depression, but also contributes to the development of many other diseases. Relief of early stress-induced (anxiety, autonomic, cardiac) symptoms, especially in high-risk individuals, is highly important, as timely initiation of therapy will make it possible to achieve a complete and lasting solution to the problem.
About the Authors
N. V. PizovaRussian Federation
Nataliia V. Pizova - Dr. Sci. (Med.), Professor of the Department of Nervous Diseases with Medical Genetics and Neurosurgery.
5, Revolutsionnaya St., Yaroslavl, 150000
A. V. Pizov
Russian Federation
Aleksandr V. Pizov - Cand. Sci. (Biol.), Associate Professor of the Department of Methods of Teaching Natural Sciences and Mathematics in Primary Schools.
108/1, Respublikanskaya St., Yaroslavl, 150000
I. N. Solovyov
Russian Federation
Igor N. Solovyov - Cand. Sci. (Med.), Associate Professor of the Department of Traumatology and Orthopedics.
5, Revolutsionnaya St., Yaroslavl, 150000
References
1. Calpe-Lopez C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Resilience to the effects of social stress on vulnerability to developing drug addiction. World J Psychiatry. 2022;12(1):24–58. https://doi.org/10.5498/wjp.v12.i1.24.
2. Pickering G, Noah L, Pereira B, Goubayon J, Leray V, Touron A et al. Assessing brain function in stressed healthy individuals following the use of a combination of green tea, Rhodiola, magnesium, and B vitamins: an fMRI study. Front Nutr. 2023;10:1211321. https://doi.org/10.3389/fnut.2023.1211321.
3. Shchaslyvyi AY, Antonenko SV, Telegeev GD. Comprehensive Review of Chronic Stress Pathways and the Efficacy of Behavioral Stress Reduction Programs (BSRPs) in Managing Diseases. Int J Environ Res Public Health. 2024;21(8):1077. https://doi.org/10.3390/ijerph21081077.
4. Sandrini L, Ieraci A, Amadio P, Zarà M, Barbieri SS. Impact of Acute and Chronic Stress on Thrombosis in Healthy Individuals and Cardiovascular Disease Patients. Int J Mol Sci. 2020;21(21):7818. https://doi.org/10.3390/ijms21217818.
5. Armborst D, Bitterlich N, Alteheld B, Rösler D, Metzner C, Siener R. Coping Strategies Influence Cardiometabolic Risk Factors in Chronic Psychological Stress: A Post Hoc Analysis of A Randomized Pilot Study. Nutrients. 2021;14(1):77. https://doi.org/10.3390/nu14010077.
6. Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10(6):434–445. https://doi.org/10.1038/nrn2639.
7. Price RB, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry. 2020;25(3):530–543. https://doi.org/10.1038/s41380-019-0615-x.
8. Russell G, Lightman S. The human stress response. Nat Rev Endocrinol. 2019;15(9):525–534. https://doi.org/10.1038/s41574-019-0228-0.
9. Oliveira TG, Chan RB, Bravo FV, Miranda A, Silva RR, Zhou B et al. The impact of chronic stress on the rat brain lipidome. Mol Psychiatry. 2016;21(1):80–88. https://doi.org/10.1038/mp.2015.14.
10. Han B, Wang JH, Geng Y, Shen L, Wang HL, Wang YY, Wang MV. Chronic stress contributes to cognitive dysfunction and hippocampal metabolic abnormalities in APP/PS1 mice. Cell Physiol Biochem. 2017;41(5):1766–1776. https://doi.org/10.1159/000471869.
11. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadelj. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci. 2007;25(10):3109–3114. https://doi.org/10.1111/j.1460-9568.2007.05560.x.
12. Squire LR, Dede AJ. Conscious and unconscious memory systems. Cold Spring Harb Perspect Biol. 2015;7(3):a021667. https://doi.org/10.1101/cshperspect.a021667.
13. Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron. 2000;27(3):623–633. https://doi.org/10.1016/s0896-6273(00)00071-4.
14. Yaribeygi H, Panahi Y, Sahraei H, Johnston TP, Sahebkar A. The impact of stress on body function: A review. EXCLIj. 2017;16:1057–1072. https://doi.org/10.17179/excli2017-480.
15. Ghodrat M, Sahraei H, Razjouyan J, Meftahi G. Effects of a saffron alcoholic extract on visual short-term memory in humans: a psychophysical study. Neurophysiology. 2014;46:247–253. Available at: https://link.springer.com/article/10.1007/s11062-014-9436-3.
16. Lupien SJ, Lepage M. Stress, memory, and the hippocampus: can’t live with it, can’t live without it. Behav Brain Res. 2001;127(1-2):137–158. https://doi.org/10.1016/s0166-4328(01)00361-8.
17. Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–422. https://doi.org/10.1038/nrn2648.
18. Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuro Psychopharmacol Biol Psychiatr. 2018;85:161–179. https://doi.org/10.1016/j.pnpbp.2017.07.004.
19. Shields GS, Sazma MA, Yonelinas AP. The effects of acute stress on core executive functions: a meta-analysis and comparison with cortisol. Neurosci Biobehav Rev. 2016;68:651–668. https://doi.org/10.1016/j.neubiorev.2016.06.038.
20. Kalia V, Vishwanath K, Knauft K, Vellen BV, Luebbe A, Williams A. Acute stress attenuates cognitive flexibility in males only: an fNIRS examination. Front Psychol. 2018;9:2084. https://doi.org/10.3389/fpsyg.2018.02084.
21. Marko M, Riečanský I. Sympathetic arousal, but not disturbed executive functioning, mediates the impairment of cognitive flexibility under stress. Cognition. 2018;174:94–102. https://doi.org/10.1016/j.cognition.2018.02.004.
22. Chajut E, Algom D. Selective attention improves under stress: implications for theories of social cognition. J Pers Soc Psychol. 2003;85(2):231–248. https://doi.org/10.1037/0022-3514.85.2.231.
23. Shi R. A meta-analysis of the relationship between anxiety and attentional control. Clin Psychol Rev. 2019:72:101754. https://doi.org/10.1016/j.cpr.2019.101754.
24. Xu J, Wang B, Ao H. Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Front Endocrinol. 2025;16:1448750. https://doi.org/10.3389/fendo.2025.1448750.
25. Matzner P, Sandbank E, Neeman E, Zmora O, Gottumukkala V, BenEliyahu S. Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat Rev Clin Oncol. 2020;17(5):313–326. https://doi.org/10.1038/s41571-019-0319-9.
26. Reiche EMV, Nunes SOV, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5(10):617–625. https://doi.org/10.1016/S1470-2045(04)01597-9.
27. Antoni MH, Dhabhar FS. The impact of psychosocial stress and stress management on immune responses in patients with cancer. Cancer. 2019;125(9):1417–1431. https://doi.org/10.1002/cncr.31943.
28. Muthuswamy R, Okada NJ, Jenkins FJ, McGuire K, McAuliffe PF, Zeh HJ et al. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun. 2017:62:78–86. https://doi.org/10.1016/j.bbi.2017.02.008.
29. Lutgendorf SK, Lamkin DM, DeGeest K, Anderson B, Dao M, McGinn S et al. Depressed and anxious mood and T-cell cytokine expressing populations in ovarian cancer patients. Brain Behav Immun. 2008;22(6):890–900. https://doi.org/10.1016/j.bbi.2007.12.012.
30. Cui B, Peng F, Lu J, He B, Su Q, Luo H et al. Cancer and stress: NextGen strategies. Brain Behav Immun. 2021;93:368–383. https://doi.org/10.1016/j.bbi.2020.11.005.
31. Zhi X, Li B, Li Z, Zhang J, Yu J, Zhang L, Xu Z. Adrenergic modulation of AMPK-dependent autophagy by chronic stress enhances cell proliferation and survival in gastric cancer. Int J Oncol. 2019;54(5):1625–1638. https://doi.org/10.3892/ijo.2019.4753.
32. Fidler MM, Gupta S, Soerjomataram I, Ferlay J, Steliarova-Foucher E, Bray F. Cancer incidence and mortality among young adults aged 20–39 years worldwide in 2012: a population-based study. Lancet Oncol. 2017;18(12):1579–1589. https://doi.org/10.1016/S1470-2045(17)30677-0.
33. Cui B, Luo Y, Tian P, Peng F, Lu J, Yang Y et al. Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J Clin Invest. 2019;129(3):1030–1046. https://doi.org/10.1172/jCI121685.
34. Jang HJ, Boo HJ, Lee HJ, Min HY, Lee HY. Chronic stress facilitates lung tumorigenesis by promoting exocytosis of IGF2 in lung epithelial cells. Cancer Res. 2016;76(22):6607–6619. https://doi.org/10.1158/0008-5472.CAN-16-0990.
35. Saul AN, Oberyszyn TM, Daugherty C, Kusewitt D, Jones S, Jewell S et al. Chronic stress and susceptibility to skin cancer. J Natl Cancer Inst. 2005;97(23):1760–1767. https://doi.org/10.1093/jnci/dji401.
36. Zhang H, Wang Z, Wang G, Song X, Qian Y, Liao Z et al. Understanding the Connection between Gut Homeostasis and Psychological Stress. J Nutr. 2023;153(4):924–939. https://doi.org/10.1016/j.tjnut.2023.01.026.
37. Mayer EA. The neurobiology of stress and gastrointestinal disease. Gut. 2000;47(6):861–869. https://doi.org/10.1136/gut.47.6.861.
38. Bailey MT, Dowd SE, Parry NMA, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun. 2010;78(4):1509–1519. https://doi.org/10.1128/IAI.00862-09.
39. Peter J, Fournier C, Durdevic M, Knoblich L, Keip B, Dejaco C et al. A microbial signature of psychological distress in irritable bowel syndrome. Psychosom Med. 2018;80(8):698–709. https://doi.org/10.1097/PSY.0000000000000630.
40. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, Mccue T et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463. https://doi.org/10.1016/j.cell.2013.11.024.
41. Bailey MT, Lubach GR, Coe CL. Prenatal stress alters bacterial colonization of the gut in infant monkeys. J Pediatr Gastroenterol Nutr. 2004;38(4):414–421. https://doi.org/10.1097/00005176-200404000-00009.
42. Karling P, Norrback KF, Adolfsson R, Danielsson A. Gastrointestinal symptoms are associated with hypothalamic-pituitary-adrenal axis suppression in healthy individuals. Scand J Gastroenterol. 2007;42(11):1294–1301. https://doi.org/10.1080/00365520701395945.
43. O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009;65(3):263–267. https://doi.org/10.1016/j.biopsych.2008.06.026.
44. Xu C, Lee SK, Zhang D, Frenette PS. The gut microbiome regulates psychological-stress-induced inflammation. Immunity. 2020;53(2):417–428. https://doi.org/10.1016/j.immuni.2020.06.025.
45. Teitelbaum AA, Gareau MG, Jury J, Yang PC, Perdue MH. Chronic peripheral administration of corticotropin-releasing factor causes colonic barrier dysfunction similar to psychological stress. Am J Physiol Gastrointest Liver Physiol. 2008;295(3):G452–G459. https://doi.org/10.1152/ajpgi.90210.2008.
46. Bharwani A, Mian MF, Foster JA, Surette MG, Bienenstock J, Forsythe P. Structural and functional consequences of chronic psychosocial stress on the microbiome and host. Psychoneuroendocrinology. 2016:63:217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001.
47. Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. Nat Rev Cardiol. 2018;15(4):215–229. https://doi.org/10.1038/nrcardio.2017.189.
48. Berntson J, Patel JS, Stewart JC. Number of recent stressful life events and incident cardiovascular disease: Moderation by lifetime depressive disorder. J Psychosom Res. 2017;99:149–154. https://doi.org/10.1016/j.jpsychores.2017.06.008.
49. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis. 2016;252:207–274. https://doi.org/10.1016/j.atherosclerosis.2016.05.037.
50. Meng LB, Zhang YM, Luo Y, Gong T, Liu DP. Chronic Stress A Potential Suspect Zero of Atherosclerosis: A Systematic Review. Front Cardiovasc Med. 2021;8:738654. https://doi.org/10.3389/fcvm.2021.738654.
51. Imperatore R, Palomba L, Cristino L. Role of orexin-A in hypertension and obesity. Curr Hypertens Rep. 2017;19(4):34. https://doi.org/10.1007/s11906-017-0729-y.
52. Tofler GH, Stone PH, Maclure M, Edelman E, Davis VG, Robertson T et al. Analysis of possible triggers of acute myocardial infarction (the MILIS study). Am J Cardiol. 1990;66(1):22–27. https://doi.org/10.1016/00029149(90)90729-K.
53. Mostofsky E, Penner EA, Mittleman MA. Outbursts of anger as a trigger of acute cardiovascular events: A systematic review and meta-analysis. Eur Heartj. 2014;35(21):1404–1410. https://doi.org/10.1093/eurheartj/ehu033.
54. Hunter R, Noble S, Lewis S, Bennett P. Long-term psychosocial impact of venous thromboembolism: A qualitative study in the community. BMJ Open. 2019;9(2):e024805. https://doi.org/10.1136/bmjopen-2018-024805.
55. Kornerup H, Osler M, Boysen G, Barefoot J, Schnohr P, Prescott E. Major life events increase the risk of stroke but not of myocardial infarction: results from the Copenhagen City Heart Study. Eur J Cardiovasc Prev Rehabil. 2010;17(1):113–118. https://doi.org/10.1097/HJR.0b013e3283359c18.
56. Kershaw KN, Brenes GA, Charles LE, Coday M, Daviglus ML, Denburg NL et al. Associations of stressful life events and social strain with incident cardiovascular disease in the Women’s Health Initiative. J Am Heart Assoc. 2014;3(3):e000687. https://doi.org/10.1161/JAHA.113.000687.
57. Kershaw KN, Diez Roux AV, Bertoni A, Carnethon MR, Everson-Rose SA, Liu K. Associations of chronic individual-level and neighbourhood-level stressors with incident coronary heart disease: the Multi-Ethnic Study of Atherosclerosis. J Epidemiol Community Health. 2015;69(2):136–141. https://doi.org/10.1136/jech-2014-204217.
58. Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol. 2021;82(3-4):193–197. https://doi.org/10.1016/j.ando.2020.03.012.
59. Ouakinin SRS, Barreira DP, Gois CJ. Depression and obesity: integrating the role of stress, neuroendocrine dysfunction and inflammatory pathways. Front Endocrinol. 2018;9:431. https://doi.org/10.3389/fendo.2018.00431.
60. Yau YH, Potenza MN. Stress and eating behaviors. Minerva Endocrinol. 2013;38(3):255–267. Available at: https://pubmed.ncbi.nlm.nih.gov/24126546.
61. Bergmann N, Gyntelberg F, Faberj. The appraisal of chronic stress and the development of the metabolic syndrome: a systematic review of prospective cohort studies. Endocr Connect. 2014;3(2):R55–R80. https://doi.org/10.1530/ec-14-0031.
62. Kuo WC, Bratzke LC, Oakley LD, Kuo F, Wang H, Brown RL. The association between psychological stress and metabolic syndrome: a systematic review and meta-analysis. Obes Rev. 2019;20(11):1651–1664. https://doi.org/10.1111/obr.12915.
63. Roohafza H, Heidari D, Talaei M, Nouri F, Khani A, Sarrafzadegan N, Sadeghi M. Are different perceived stressors associated with metabolic syndrome: a longitudinal cohort study of adults in central Iran. J Diabetes Metab Disord. 2023;22(2):1715–1721. https://doi.org/10.1007/s40200-023-01304-3.
64. Goens D, Virzi NE, Jung SE, Rutledge TR, Zarrinpar A. Obesity, Chronic Stress, and Stress Reduction. Gastroenterol Clin North Am. 2023;52(2):347–362. https://doi.org/10.1016/j.gtc.2023.03.009.
65. Orr E, Arbel T, Levy M, Sela Y, Weissberger O, Liran O, Lewisj. Virtual reality in the management of stress and anxiety disorders: A retrospective analysis of 61 people treated in the metaverse. Heliyon. 2023;9(7):e17870. https://doi.org/10.1016/j.heliyon.2023.e17870.
66. Pizova NV, Pizov AV. Acute stress-induced disorders in general practice. Meditsinskiy Sovet. 2023;17(21):89–94. (In Russ.) https://doi.org/10.21518/ms2023-432.
67. Kutashev VA. Modern approach to the therapy for autonomic disorders in patients under stressful conditions. Meditsinskiy Sovet. 2018;(18):92–95. (In Russ.) https://doi.org/10.21518/2079-701X-2018-18-92-95.
68. Prozherin Yu, Shirokova I. First aid for nervousness and overexcitement. Remedium. 2020;(1-3):38–39. (In Russ.) https://doi.org/10.21518/1561-5936-2020-1-2-3-38-39.
69. Trukhan DI, Ivanova DS. Adverse cardiological and neurological reactions associated with air traffic and the possibility of their pharmacological correction. Meditsinskiy Sovet. 2024;18(16):127–133. (In Russ.) https://doi.org/10.21518/ms2024-410.
70. Kadyrova LR, Gubeev BЕ, Rakhmatullina EF. Treatment options for situational anxiety in the neurology physician practice. Meditsinskiy Sovet. 2023;17(21):161–167. (In Russ.) https://doi.org/10.21518/ms2023-413.
71. Bakkali ME, Aboudrar S, Dakka T, Benjelloun H. Autonomic dysregulation and phenobarbital in patients with masked primary hypertension. Heliyon. 2020;6(1):e03239. https://doi.org/10.1016/j.heliyon.2020.e03239.
Review
For citations:
Pizova NV, Pizov AV, Solovyov IN. Effects of stress on the human body. Meditsinskiy sovet = Medical Council. 2025;(12):73-80. (In Russ.) https://doi.org/10.21518/ms2025-273