Preview

Meditsinskiy sovet = Medical Council

Advanced search

Transcranial direct current stimulation in Parkinson’s disease

https://doi.org/10.21518/ms2025-228

Abstract

Parkinson’s disease is one of the most common neurodegenerative pathologies manifested by progressive motor and cognitiveaffective disorders. In the context of global population aging, the prevalence of pathology continues to grow steadily, which creates a significant medical and social burden on health care systems and determines the relevance of the search for new therapeutic approaches. As an additional method of Parkinson’s disease treatment transcranial direct current stimulation (tDCS) is used to reduce motor and non-motor manifestations. Randomized controlled trials, meta-analyses, and systematic reviews have been conducted to evaluate the efficacy of tDCS in Parkinson’s disease. Clinical studies demonstrate the significant potential of tDCS for the correction of motor impairments, with a focus on symptoms of hypokinesia, postural instability, gait disturbances, and cognitive impairment, with the most pronounced positive changes in executive function and working memory. Additionally, there is a positive effect on the affective sphere, manifested in a reliable reduction of depressive symptomatology according to standardized assessment scales. In addition, there is strong evidence of a normalizing effect on sleep architecture, including improvements in sleep duration and quality, which is of particular importance in patients with comorbid sleep disorders. Overall, tDCS represents a promising direction in the complex therapy of Parkinson’s disease, demonstrating a good safety profile and a wide range of therapeutic effects. The greatest clinical efficacy is achieved when optimized stimulation protocols are used in combination with other rehabilitation methods. Future research should focus on developing personalized approaches and more thorough investigation of long-term effects.

About the Authors

S. P. Bordovsky
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Sergey P. Bordovsky - Postgraduate Student of the Department of Nervous Diseases and Neurosurgery, Sklifosovsky Institute of Clinical Medicine.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



R. T. Murtazina
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Renata T. Murtazina - Research Intern of the Department of Neurology and Neurosurgery, Sklifosovsky Institute of Clinical Medicine, Resident of the Kozhevnikov Clinic of Nervous Diseases.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



S. S. Andreev
HSE University
Russian Federation

Sergey S. Andreev - Research Intern, Centre for Cognition and Decision Making.

20, Myasnitskaya St., Moscow, 101000



T. O. Meinova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Taisiya O. Meinova - Student, Sklifosovsky Institute of Clinical Medicine.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



Iu. I. Gorlova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Iuliia I. Gorlova - Student, Sklifosovsky Institute of Clinical Medicine.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



A. D. Taranova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Anna D. Taranova - Student, Sklifosovsky Institute of Clinical Medicine.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



V. D. Kotenko
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Valentina D. Kotenko - Resident of the Kozhevnikov Clinic of Nervous Diseases.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



O. O. Zinchenko
HSE University
Russian Federation

Oksana O. Zinchenko - Cand. Sci. (Psych.), Senior Researcher of the Centre for Cognition and Decision Making.

20, Myasnitskaya St., Moscow, 101000



S. S. Muraveva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Svetlana S. Muraveva - Student, Sklifosovsky Institute of Clinical Medicine.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



K. V. Shevtsova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Kseniya V. Shevtsova - Cand. Sci. (Med.), Assistant of the Department of Neurology and Neurosurgery, Sklifosovsky Institute of Clinical Medicine.

8, Bldg. 2, Trubetskaya St., Moscow, 119991



References

1. Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.

2. Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583–1590. https://doi.org/10.1002/MDS.25945.

3. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–535. https://doi.org/10.1016/S1474-4422(06)70471-9.

4. Bril EV, Fedorova NV, Kulua TK, Zimnyakova OS. Treatment of the early stages of Parkinson’s disease. Differences in approaches to the choice of therapy in different countries. Neurology, Neuropsychiatry, Psychosomatics. 2024;16(3): 130–135. (In Russ.) https://doi.org/10.14412/2074-2711-2024-3-130-135.

5. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–386. https://doi.org/10.1212/01.WNL.0000247740.47667.03.

6. Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson’s disease in the United States. Mov Disord. 2013;28(3):311–318. https://doi.org/10.1002/MDS.25292.

7. Katunina EA, Zalyalova ZA, Pokhabov DV, Ivanova MZ, Semenova AM. Parkinson’s disease. Focus on early stages. Neurology, Neuropsychiatry, Psychosomatics. 2023;15(3):95–103. (In Russ.) https://doi.org/10.14412/ 2074-2711-2023-3-95-103.

8. Beretta VS, Conceição NR, Nóbrega-Sousa P, Orcioli-Silva D, Dantas LKBF, Gobbi LTB, Vitório R. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson’s disease: a systematic review. J Neuroeng Rehabil. 2020;17(1):74. https://doi.org/10.1186/S12984-020-00701-6.

9. Nguyen TXD, Mai PT, Chang YJ, Hsieh TH. Effects of transcranial direct current stimulation alone and in combination with rehabilitation therapies on gait and balance among individuals with Parkinson’s disease: a systematic review and meta-analysis. J Neuroeng Rehabil. 2024;21(1):27. https://doi.org/10.1186/S12984-024-01311-2.

10. Talar K, Vetrovsky T, van Haren M, Négyesi J, Granacher U, Váczi M et al. The effects of aerobic exercise and transcranial direct current stimulation on cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev. 2022;81:101738. https://doi.org/10.1016/J.ARR.2022.101738.

11. Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020;131(2):474–528. https://doi.org/10.1016/J.CLINPH.2019.11.002.

12. Wei YX, Tu LD, He L, Qiu YT, Su W, Zhang L et al. Research hotspots and trends of transcranial magnetic stimulation in Parkinson’s disease: a bibliometric analysis. Front Neurosci. 2023;17:1280180. https://doi.org/10.3389/FNINS.2023.1280180.

13. Xie YJ, Gao Q, He CQ, Bian R. Effect of Repetitive Transcranial Magnetic Stimulation on Gait and Freezing of Gait in Parkinson Disease: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil. 2020;101(1):130–140. https://doi.org/10.1016/J.APMR.2019.07.013.

14. Zhang W, Deng B, Xie F, Zhou H, Guo JF, Jiang H et al. Efficacy of repetitive transcranial magnetic stimulation in Parkinson’s disease: A systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine. 2022;52:101589. https://doi.org/10.1016/J.ECLINM.2022.101589.

15. Malek N. Deep Brain Stimulation in Parkinson’s Disease. Neurol India. 2019;67(4):968–978. https://doi.org/10.4103/0028-3886.266268.

16. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–1048. https://doi.org/10.1016/J.CLINPH.2015.11.012.

17. Hess CW. Modulation of cortical-subcortical networks in Parkinson’s disease by applied field effects. Front Hum Neurosci. 2013;7:565. https://doi.org/10.3389/FNHUM.2013.00565.

18. Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):1133–1145. https://doi.org/10.1017/S1461145710001690.

19. Bikson M, Datta A, Elwassif M. Establishing safety limits for transcranial direct current stimulation. Clin Neurophysiol. 2009;120(6):1033–1034. https://doi.org/10.1016/J.CLINPH.2009.03.018.

20. Klem GH, Lüders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3–6. Available at: https://media.journals.elsevier.com/content/files/clinph-chapter11-14082757.pdf.

21. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53. https://doi.org/10.1177/1073858410386614.

22. Pelletier SJ, Cicchetti F. Cellular and Molecular Mechanisms of Action of Transcranial Direct Current Stimulation: Evidence from In Vitro and In Vivo Models. Int J Neuropsychopharmacol. 2015;18(2):pyu047. https://doi.org/10.1093/IJNP/PYU047.

23. Feng XJ, Huang YT, Huang YZ, Kuo CW, Peng CW, Rotenberg A et al. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats. Brain Stimul. 2020;13(3):655–663. https://doi.org/10.1016/j.brs.2020.02.002.

24. Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774–1809. https://doi.org/10.1016/J.CLINPH.2017.06.001.

25. de Oliveira PCA, de Araújo TAB, Machado DGDS, Rodrigues AC, Bikson M, Andrade SM et al. Transcranial Direct Current Stimulation on Parkinson’s Disease: Systematic Review and Meta-Analysis. Front Neurol. 2022;12:794784. https://doi.org/10.3389/FNEUR.2021.794784.

26. Liu X, Li L, Liu Y. Comparative motor effectiveness of non-invasive brain stimulation techniques in patients with Parkinson’s disease: A network meta-analysis. Medicine. 2023;102(39):e34960. https://doi.org/10.1097/MD.0000000000034960.

27. Pol F, Salehinejad MA, Baharlouei H, Nitsche MA. The effects of transcranial direct current stimulation on gait in patients with Parkinson’s disease: a systematic review. Transl Neurodegener. 2021;10(1):22. https://doi.org/10.1186/S40035-021-00245-2.

28. Suarez-García DMA, Grisales-Cárdenas JS, Zimerman M, Cardona JF. Transcranial Direct Current Stimulation to Enhance Cognitive Impairment in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Front Neurol. 2020;11:597955. https://doi.org/10.3389/FNEUR.2020.597955.

29. Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med. 2020;50(15):2465–2486. https://doi.org/10.1017/S0033291720003670.

30. Duan Z, Zhang C. Transcranial direct current stimulation for Parkinson’s disease: systematic review and meta-analysis of motor and cognitive effects. NPJ Parkinsons Dis. 2024;10(1):214. https://doi.org/10.1038/s41531-024-00821-z.

31. Chen Y, Jiang H, Wei Y, Ye S, Jiang J, Mak MKY et al. Effects of non-invasive brain stimulation over the supplementary motor area on motor function in Parkinson’s disease: A systematic review and meta-analysis. Brain Stimul. 2025;18(1):1–14. https://doi.org/10.1016/j.brs.2024.12.005.

32. Zhang X, Jing F, Liu Y, Tang J, Hua X, Zhu J et al. Effects of non-invasive brain stimulation on walking and balance ability in Parkinson’s patients: A systematic review and meta-analysis. Front Aging Neurosci. 2023;14:1065126. https://doi.org/10.3389/fnagi.2022.1065126.

33. Nascimento LR, do Carmo WA, de Oliveira GP, Arêas FZDS, Dias FMV. Transcranial direct current stimulation provides no clinically important benefits over walking training for improving walking in Parkinson’s disease: a systematic review. J Physiother. 2021;67(3):190–196. https://doi.org/10.1016/J.JPHYS.2021.06.003.

34. Ma S, Zhuang W, Wang X, Zhang D, Wang H, Han Q et al. Efficacy of transcranial direct current stimulation on cognitive function in patients with Parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci. 2025;17:1495492. https://doi.org/10.3389/FNAGI.2025.1495492.

35. Lee H, Choi BJ, Kang N. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson’s disease: a systematic review and meta-analysis. J Neuroeng Rehabil. 2024;21(1):205. https://doi.org/10.1186/S12984-024-01505-8.

36. Cammisuli DM, Cignoni F, Ceravolo R, Bonuccelli U, Castelnuovo G. Transcranial Direct Current Stimulation (tDCS) as a Useful Rehabilitation Strategy to Improve Cognition in Patients With Alzheimer’s Disease and Parkinson’s Disease: An Updated Systematic Review of Randomized Controlled Trials. Front Neurol. 2022;12:798191. https://doi.org/10.3389/FNEUR.2021.798191.

37. Burton CZ, Garnett EO, Capellari E, Chang SE, Tso IF, Hampstead BM, Taylor SF. Combined Cognitive Training and Transcranial Direct Current Stimulation in Neuropsychiatric Disorders: A Systematic Review and MetaAnalysis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;8(2):151–161. https://doi.org/10.1016/J.BPSC.2022.09.014.

38. Kwon DY, Yoon HK. Improvement of Depression and Daily Activity After Transcranial Direct Current Stimulation in Patients with Parkinson’s Disease. Brain Stimul. 2025;18(1):377. https://doi.org/10.1016/J.BRS.2024.12.487.

39. Chmiel J, Rybakowski F, Leszekj. Effect of Transcranial Direct Current Stimulation (tDCS) on Depression in Parkinson’s Disease-A Narrative Review. J Clin Med. 2024;13(3):699. https://doi.org/10.3390/JCM13030699.

40. Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol. 2020;24(4):256–313. https://doi.org/10.1093/IJNP/PYAA051.

41. Hadoush H, Alqudah A, Banihani SA, Al-Jarrah M, Amro A, Aldajah S. Melatonin serum level, sleep functions, and depression level after bilateral anodal transcranial direct current stimulation in patients with Parkinson’s disease: a feasibility study. Sleep Sci. 2021;14(Spec. 1):25. https://doi.org/10.5935/1984-0063.20200083.

42. Herrero Babiloni A, Bellemare A, Beetz G, Vinet SA, Martel MO, Lavigne GJ, De Beaumont L. The effects of non-invasive brain stimulation on sleep disturbances among different neurological and neuropsychiatric conditions: A systematic review. Sleep Med Rev. 2021;55:101381. https://doi.org/10.1016/J.SMRV.2020.101381.

43. Manenti R, Cotelli MS, Cobelli C, Gobbi E, Brambilla M, Rusich D et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: A randomized, placebo-controlled study. Brain Stimul. 2018;11(6):1251–1262. https://doi.org/10.1016/J.BRS.2018.07.046.

44. Lawrence BJ, Gasson N, Johnson AR, Booth L, Loftus AM. Cognitive Training and Transcranial Direct Current Stimulation for Mild Cognitive Impairment in Parkinson’s Disease: A Randomized Controlled Trial. Parkinsons Dis. 2018;2018:4318475. https://doi.org/10.1155/2018/4318475.

45. Martin DM, Mohan A, Alonzo A, Gates N, Gbadeyan O, Meinzer M et al. A Pilot Double-Blind Randomized Controlled Trial of Cognitive Training Combined with Transcranial Direct Current Stimulation for Amnestic Mild Cognitive Impairment. J Alzheimers Dis. 2019;71(2):503–512. https://doi.org/10.3233/JAD-190306.

46. Das N, Spence JS, Aslan S, Vanneste S, Mudar R, Rackley A et al. Cognitive Training and Transcranial Direct Current Stimulation in Mild Cognitive Impairment: A Randomized Pilot Trial. Front Neurosci. 2019;13:307. https://doi.org/10.3389/FNINS.2019.00307.

47. Lu H, Chan SSM, Chan WC, Lin C, Cheng CPW, Linda Chiu Wa L. Randomized controlled trial of TDCS on cognition in 201 seniors with mild neurocognitive disorder. Ann Clin Transl Neurol. 2019;6(10):1938–1948. https://doi.org/10.1002/ACN3.50823.

48. Sarycheva TN. Administration of transcranial electrical stimulation for non-motor symptoms of Parkinson’s disease. Journal of Volgograd State Medical University. 2011;(3):36–38. (In Russ.) Available at: https://elibrary.ru/oezwat.

49. Pavlova EL, Menshikova AA, Akzhigitov RG, Guekht AB. Transcranial direct current stimulation in neurology and psychiatry. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2020;120(12):123–130. (In Russ.) https://doi.org/10.17116/JNEVRO2020120121123.

50. Stavrovskaya AV, Voronkov DN, Potapov IA, Titov DS, Olshansky AS, Pavlova AK et al. Transcranial Direct Current Stimulation for Improvement of Neurotransplantation Outcomes in Rats with 6-HydroxydopamineInduced Parkinsonism. Annals of Clinical and Experimental Neurology. 2024;18(4):44–54. (In Russ.) https://doi.org/10.17816/ACEN.1199.


Review

For citations:


Bordovsky SP, Murtazina RT, Andreev SS, Meinova TO, Gorlova II, Taranova AD, Kotenko VD, Zinchenko OO, Muraveva SS, Shevtsova KV. Transcranial direct current stimulation in Parkinson’s disease. Meditsinskiy sovet = Medical Council. 2025;(12):82-91. (In Russ.) https://doi.org/10.21518/ms2025-228

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)