Preview

Meditsinskiy sovet = Medical Council

Advanced search

Cognitive and psycho-emotional disorders in children after traumatic brain injuries: Causes, clinical picture and therapy

https://doi.org/10.21518/ms2025-305

Abstract

Traumatic brain injury (TBI) is a major public health concern with an estimated not less than 3 million children worldwide affected annually. It can result in death or disability, especially in patients with moderate or severe TBI. According to the Federal State Statistics Service (Rosstat), in Russia 1,014.3 thousand cases of head injury were registered in children aged 0 to 17 years (3,353.5 per 100,000 children) in 2023, which is second only to wrist/hand injuries and ankle/foot injuries in terms of figures. Children who had TBIs may suffer not only from movement disorders associated with brain injury, but also have a combination of cognitive, behavioural, and emotional impairments that may persist for a long period of time after the injury. Children with moderate to severe TBIs develop deficits that persist into adulthood, affecting education and employments outcomes, psychosocial functioning, and quality of life. Post-concussion syndrome, the most common complication of mild TBI, can develop in all age groups. Dysexecutive syndrome has been shown to be present during the acute period of recovery from TBI and may persist over the long-term horizon. Executive functions are crucial for a child's academic performance and overall development. Blood biomarkers have been explored for their potential to provide objective measures in the assessment of injury severity and to help identify children at risk for delayed recovery of CNS functions. Medical treatment for children with TBI should include a multidisciplinary approach and creation of individual trajectories of recovery programs with due account for identified disorders. Choline alfoscerate is a promising effective drug to correct neurodevelopmental disorders and recover cognitive functions in children after TBI.

About the Author

Yu. E. Nesterovskiy
Pirogov Russian National Research Medical University
Russian Federation

Yuriy E. Nesterovskiy - Cand. Sci. (Med.), Associate Professor of the Department of Neurology, Neurosurgery and Medical Genetics named after Academician L.O. Badalyan, Institute of Neurosciences and Neurotechnology.

1, Ostrovityanov St., Moscow, 117997



References

1. Dewan MC, Mummareddy N, Wellons JC, Bonfield CM. Epidemiology of Global Pediatric Traumatic Brain Injury: Qualitative Review. World Neurosurg. 2016;91:497–509.e1. https://doi.org/10.1016/j.wneu.2016.03.045.

2. Александрова ГА, Ахметзянова РР, Голубев НА, Кириллова ГН, Огрызко ЕВ, Оськов ЮИ и др. Здравоохранение в России. М.; 2023. 179 с. Режим доступа: https://youthlib.mirea.ru/ru/reader/6229.

3. Babikian T, Asarnow R. Neurocognitive outcomes and recovery after pediatric TBI: meta-analytic review of the literature. Neuropsychology. 2009;23(3):283–296. https://doi.org/10.1037/a0015268.

4. Anderson V, Brown S, Newitt H, Hoile H. Educational, vocational, psychosocial, and quality-of-life outcomes for adult survivors of childhood traumatic brain injury. J Head Trauma Rehabil. 2009;24(5):303–312. https://doi.org/10.1097/HTR.0b013e3181ada830.

5. Balaban T, Hyde N, Colantonio A. The effects of traumatic brain injury during adolescence on career plans and outcomes. Phys Occup Ther Pediatr. 2009;29(4):367–383. https://doi.org/10.3109/01942630903245333.

6. Mihić J, Rotim K, Marcikić M, Smiljanić D. Head injury in children. Acta Clin Croat. 2011;50(4):539–548. Available at: https://pubmed.ncbi.nlm.nih.gov/22649884/.

7. Sharova EA, Valiullina SA. Traumatic brain injury in children in Moscow. Zdorovye Megapolisa. 2021;2(2):35–45. (In Russ.) Available at: https://cyberleninka.ru/article/n/cherepno-mozgovaya-travma-u-deteyv-gorode-moskve.

8. Boudiab EM, Zaikos T, Issa C, Chaiyasate K. Trends in craniofacial injuries associated with the introduction of electric scooter sharing services. FACE. 2021;2(1):89–93. https://doi.org/10.1177/2732501621992441.

9. Trivedi TK, Liu C, Antonio ALM, Wheaton N, Kreger V, Yap A, Schriger D, Elmore JG. Injuries Associated With Standing Electric Scooter Use. JAMA Netw Open. 2019;2(1):e187381. https://doi.org/10.1001/jamanetworkopen.2018.7381.

10. Coelho A, Feito P, Corominas L, Sánchez-Soler JF, Pérez-Prieto D, MartínezDiaz S et al. Electric Scooter-Related Injuries: A New Epidemic in Orthopedics. J Сlin Med. 2021;10(15):3283. https://doi.org/10.3390/jcm10153283.

11. Sher T, Shah J, Holbrook EA, Thomas A, Wilsonj. Electric Scooter Injuries in Tampa, Florida, Are Associated With High Rates of Head Injury, Hospital Admission, and Emergency Medical Service Transport and Low Rates of Helmet Use. Cureus. 2023;15(5):e39523. https://doi.org/10.7759/cureus.39523.

12. Meehan WP, Mannix R. Pediatric concussions in United States emergency departments in the years 2002 to 2006. J Pediatr. 2010;157(6):889–893. https://doi.org/10.1016/j.jpeds.2010.06.040.

13. Takagi M, Babl FE, Anderson N, Bressan S, Clarke CJ, Crichton A et al. Protocol for a prospective, longitudinal, cohort study of recovery pathways, acute biomarkers and cost for children with persistent postconcussion symptoms: the Take CARe Biomarkers study. BMJ Open. 2019;9(2):e022098. https://doi.org/10.1136/bmjopen-2018-022098.

14. Lumba-Brown A, Yeates KO, Sarmiento K, Breiding MJ, Haegerich TM, Gioia GA et al. Centers for Disease Control and Prevention Guideline on the Diagnosis and Management of Mild Traumatic Brain Injury Among Children. AMA Pediatr. 2018;172(11):e182853. https://doi.org/10.1001/jamapediatrics.2018.2853.

15. Sharp DJ, Jenkins PO. Concussion is confusing us all. Pract Neurol. 2015;15(3):172–186. https://doi.org/10.1136/practneurol-2015-001087.

16. Mavroudis I, Kazis D, Chowdhury R, Petridis F, Costa V, Balmus IM et al. Post-Concussion Syndrome and Chronic Traumatic Encephalopathy: Narrative Review on the Neuropathology, Neuroimaging and Fluid Biomarkers. Diagnostics. 2022;12(3):740. https://doi.org/10.3390/diagnostics12030740.

17. Kaur P, Sharma S. Recent Advances in Pathophysiology of Traumatic Brain Injury. Curr Neuropharmacol. 2018;16(8):1224–1238. https://doi.org/10.2174/1570159X15666170613083606.

18. Voormolen DC, Cnossen MC, Polinder S, von Steinbuechel N, Vos PE, Haagsma JA. Divergent Classification Methods of Post-Concussion Syndrome after Mild Traumatic Brain Injury: Prevalence Rates, Risk Factors, and Functional Outcome. J Neurotrauma. 2018;35(11):1233–1241. https://doi.org/10.1089/neu.2017.5257.

19. Shi S, Almklov E, Afari N, Pittman JO. E. Symptoms of major depressive disorder and post-traumatic stress disorder in veterans with mild traumatic brain injury: A network analysis. PloS ONE. 2023;18(5):e0283101. https://doi.org/10.1371/journal.pone.0283101.

20. Kirk C, Nagiub G, Abu-Arafeh I. Chronic post-traumatic headache after head injury in children and adolescents. Dev Med Child Neurol. 2008;50(6):422–425. https://doi.org/10.1111/j.1469-8749.2008.02063.x.

21. Zeldovich M, Bockhop F, Covic A, Cunitz K, Polinder S, Haagsma JA et al. Reference Values for the Rivermead Post-Concussion Symptoms Questionnaire (RPQ) from General Population Samples in the United Kingdom, Italy, and The Netherlands. J Clin Med. 2022;11(16):4658. https://doi.org/10.3390/jcm11164658.

22. Potter S, Leigh E, Wade D, Fleminger S. The Rivermead Post Concussion Symptoms Questionnaire: a confirmatory factor analysis. J Neurol. 2006;253(12):1603–1614. https://doi.org/10.1007/s00415-006-0275-z.

23. Fried E, Balla U, Catalogna M, Kozer E, Oren-Amit A, Hadanny A, Efrati S. Persistent post-concussive syndrome in children after mild traumatic brain injury is prevalent and vastly underdiagnosed. Sci Rep. 2022;12(1):4364. https://doi.org/10.1038/s41598-022-08302-0.

24. Williams CN, Lim MM, Shea SA. Sleep disturbance after pediatric traumatic brain injury: critical knowledge gaps remain for the critically injured. Nat Sci Sleep. 2018;10:225–228. https://doi.org/10.2147/NSS.S174608.

25. Williams CN, McEvoy CT, Lim MM, Shea SA, Kumar V, Nagarajan D et al. Sleep and Executive Functioning in Pediatric Traumatic Brain Injury Survivors after Critical Care. Children. 2022;9(5):748. https://doi.org/10.3390/children9050748.

26. Kooper CC, van Houten MA, Niele N, Aarnoudse-Moens C, van Roermund M, Oosterlaan J, Plötz FB, Königs M. Long-Term Neurodevelopmental Outcome of Children With Mild Traumatic Brain Injury. Pediatr Neurol. 2024;160:18–25. https://doi.org/10.1016/j.pediatrneurol.2024.07.011.

27. Karic S, DesRosiers M, Mizrahi B, Zevallos J, Rodriguez P, Barengo NC. The association between attention deficit hyperactivity disorder severity and risk of mild traumatic brain injury in children with attention deficit hyperactivity disorder in the United States of America: A cross-sectional study of data from the National Survey of Children with Special Health Care Needs. Child Care Health Dev. 2019;45(5):688–693. https://doi.org/10.1111/cch.12684.

28. Veliz PT, Berryhill ME. Gender Differences in Adolescents’ Affective Symptoms and Behavioral Disorders After Mild Traumatic Brain Injury. J Head Trauma Rehabil. 2023;38(4):308–318. https://doi.org/10.1097/HTR.0000000000000851.

29. Keenan HT, Clark A, Holubkov R, Ewing-Cobbs L. Longitudinal Developmental Outcomes of Infants and Toddlers With Traumatic Brain Injury. JAMA Netw Open. 2023;6(1):e2251195. https://doi.org/10.1001/jamanetworkopen.2022.51195.

30. Max JE, Troyer EA, Arif H, Vaida F, Wilde EA, Bigler ED et al. Traumatic Brain Injury in Children and Adolescents: Psychiatric Disorders 24 Years Later. J Neuropsychiatry Clin Neurosci. 2022;34(1):60–67. https://doi.org/10.1176/appi.neuropsych.20050104.

31. Williams WH, Chitsabesan P, Fazel S, McMillan T, Hughes N, Parsonage M, Tonksj. Traumatic brain injury: a potential cause of violent crime? Lancet Psychiatry. 2018;5(10):836–844. https://doi.org/10.1016/S2215-0366(18)30062-2.

32. Pavlovic D, Pekic S, Stojanovic M, Popovic V. Traumatic brain injury: neuropathological, neurocognitive and neurobehavioral sequelae. Pituitary. 2019;22(3):270–282. https://doi.org/10.1007/s11102-019-00957-9.

33. Youngblut JM, Shiao SY. Characteristics of a child’s critical illness and parents’ reactions: preliminary report of a pilot study. Am J Crit Care. 1992;1(3):80–84. Available at: https://pubmed.ncbi.nlm.nih.gov/1307910/.

34. Harris BH, Schwaitzberg SD, Seman TM, Herrmann C. The hidden morbidity of pediatric trauma. J Pediatr Surg. 1989;24(1):103–106. https://doi.org/10.1016/s0022-3468(89)80311-2.

35. Hu X, Wesson DE, Kenney BD, Chipman ML, Spence LJ. Risk factors for extended disruption of family function after severe injury to a child. CMAJ. 1993;149(4):421–427. Available at: https://pubmed.ncbi.nlm.nih.gov/8348424/.

36. Youngblut JM, Singer LT, Boyer C, Wheatley MA, Cohen AR, Grisoni ER. Effects of pediatric head trauma for children, parents, and families. Crit Care Nurs Clin North Am. 2000;12(2):227–235. Available at: https://pubmed.ncbi.nlm.nih.gov/11249368/.

37. Giza CC, Hovda DA. The Neurometabolic Cascade of Concussion. J Athl Train. 2001;36(3):228–235. Available at: https://pubmed.ncbi.nlm.nih.gov/12937489/.

38. Mercier E, Tardif PA, Cameron PA, Émond M, Moore L, Mitra B et al. Prognostic value of neuron-specific enolase (NSE) for prediction of postconcussion symptoms following a mild traumatic brain injury: a systematic review. Brain Inj. 2018;32(1):29–40. https://doi.org/10.1080/02699052.2017.1385097.

39. Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. 2017;159(2):209–225. https://doi.org/10.1007/s00701-016-3046-3.

40. Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012;120(5):644–659. https://doi.org/10.1111/j.1471-4159.2011.07612.x.

41. Kelmendi FM, Morina AA, Mekaj AY, Dragusha S, Ahmeti F, Alimehmeti R et al. Ability of S100B to predict post-concussion syndrome in paediatric patients who present to the emergency department with mild traumatic brain injury. Br J Neurosurg. 2023;37(1):53–58. https://doi.org/10.1080/02688697.2021.1878487.

42. Reeves SA, Helman LJ, Allison A, Israel MA. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci U S A. 1989;86(13):5178–5182. https://doi.org/10.1073/pnas.86.13.5178.

43. Papa L, Brophy GM, Alvarez W, Hirschl R, Cress M, Weber K, Giordano P. Sex differences in time course and diagnostic accuracy of GFAP and UCH-L1 in trauma patients with mild traumatic brain injury. Sci Rep. 2023;13(1):11833. https://doi.org/10.1038/s41598-023-38804-4.

44. Zheng X, Yang J, Hou Y, Shi X, Liu K. Prediction of clinical progression in nervous system diseases: plasma glial fibrillary acidic protein (GFAP). Eur J Med Res. 2024;29(1):51. https://doi.org/10.1186/s40001-023-01631-4.

45. Kim KY, Shin KY, Chang KA. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells. 2023;12(9):1309. https://doi.org/10.3390/cells12091309.

46. Zheng X, Yang J, Hou Y, Shi X, Liu K. Prediction of clinical progression in nervous system diseases: plasma glial fibrillary acidic protein (GFAP). Eur J Med Res. 2024;29(1):51. https://doi.org/10.1186/s40001-023-01631-4.

47. Liliang PC, Liang CL, Weng HC, Lu K, Wang KW, Chen HJ, Chuang JH. Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res. 2010;160(2):302–307. https://doi.org/10.1016/j.jss.2008.12.022.

48. Ma M, Lindsell CJ, Rosenberry CM, Shaw GJ, Zemlan FP. Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. Am J Emerg Med. 2008;26(7):763–768. https://doi.org/10.1016/j.ajem.2007.10.029.

49. Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochemj. 2016;473(16):2453–2462. https://doi.org/10.1042/BCJ20160082.

50. Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma. 2014;31(1):19–25. https://doi.org/10.1089/neu.2013.3040.

51. Lewis JM, Dhawan S, Obirieze AC, Sarno B, Akers J, Heller MJ, Chen CC. Plasma Biomarker for Post-concussive Syndrome: A Pilot Study Using an Alternating Current Electro-Kinetic Platform. Front Neurol. 2020;11:685. https://doi.org/10.3389/fneur.2020.00685.

52. Berger RP, Hayes RL, Richichi R, Beers SR, Wang KK. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma. 2012;29(1):162–167. https://doi.org/10.1089/neu.2011.1989.

53. Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma. 2014;31(1):19–25. https://doi.org/10.1089/neu.2013.3040.

54. Karantali E, Kazis D, McKenna J, Chatzikonstantinou S, Petridis F, Mavroudis I. Neurofilament light chain in patients with a concussion or head impacts: a systematic review and meta-analysis. Eur J Trauma Emerg Surg. 2022;48(3):1555–1567. https://doi.org/10.1007/s00068-021-01693-1.

55. Mortaheb S, Filippini MM, Kaux JF, Annen J, Lejeune N, Martens G et al. Neurophysiological Biomarkers of Persistent Post-concussive Symptoms: A Scoping Review. Front Neurol. 2021;12:687197. https://doi.org/10.3389/fneur.2021.687197.

56. Königs M, Pouwels PJ, Ernest van Heurn LW, Bakx R, Jeroen Vermeulen R, Goslings JC et al. Relevance of neuroimaging for neurocognitive and behavioral outcome after pediatric traumatic brain injury. Brain Imaging Behav. 2018;12(1):29–43. https://doi.org/10.1007/s11682-017-9673-3.

57. van der Horn HJ, Wick TV, Ling JM, McQuaid JR, Nathaniel U, Miller SD et al. Trajectories of intrinsic connectivity one year post pediatric mild traumatic brain injury: Neural injury superimposed on neurodevelopment. Cortex. 2025;184:120–130. https://doi.org/10.1016/j.cortex.2024.12.022.

58. van der Horn HJ, Ling JM, Wick TV, Dodd AB, Robertson-Benta CR, McQuaid JR et al. Dynamic Functional Connectivity in Pediatric Mild Traumatic Brain Injury. Neuroimage. 2024;285:120470. https://doi.org/10.1016/j.neuroimage.2023.120470.

59. Kurowski BG, Treble-Barna A, Pilipenko V, Wade SL, Yeates KO, Taylor HG et al. Genetic Influences on Behavioral Outcomes After Childhood TBI: A Novel Systems Biology-Informed Approach. Front Genet. 2019;10:481. https://doi.org/10.3389/fgene.2019.00481.

60. Kurowski BG, Treble-Barna A, Pitzer AJ, Wade SL, Martin LJ, Chima RS, Jegga A. Applying Systems Biology Methodology To Identify Genetic Factors Possibly Associated with Recovery after Traumatic Brain Injury. J Neurotrauma. 2017;34(14):2280–2290. https://doi.org/10.1089/neu.2016.4856.

61. Guzeva VI, Guzeva VV, Guzeva OV, Kasumov VR, Okhrim IV, Orel VV. Clinical manifestations and diagnosis of consequences of traumatic brain injury in children. Russian Bulletin of Perinatology and Pediatrics. 2022;67(1):89–93. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-1-89-93.

62. Shah AS, Raghuram A, Kaur K, Lipson S, Shoshany T, Stevens R et al. SpecialtySpecific Diagnoses in Pediatric Patients With Postconcussion Syndrome: Experience From a Multidisciplinary Concussion Clinic. Clin J Sport Med. 2022;32(2):114–121. https://doi.org/10.1097/JSM.0000000000000891.

63. Gainetdinova DD, Agranovich OV, Nemkova SA, Maslova NN, Khaletskaya OV, Kurushina OV et al. The Results of a Multicenter, DoubleBlind, Randomized, Placebo-Controlled Clinical Trial of the Efficacy, Safety and Tolerability of the Drug Cereton in the Treatment of Cognitive Impairment in Children in the Recovery Period of Traumatic Brain Injury and Hemorrhagic Stroke. Effective Pharmacotherapy. 2024;20(14):6–14. (In Russ.) Available at: https://umedp.ru/articles/rezultaty_mnogotsentrovogo_dvoynogo_slepogo_randomizirovannogo_ platsebokontroliruemogo_klinicheskogo.html.

64. Zavadenko NN, Zykov VP, Gaynetdinova DD, Agranovich OV,Chutko LS, Kovalev GI et al. Multidisciplinary consensus on the use of cereton drug in treatment of central nervous system diseases with cognitive impairments of congenital and acquired origin in children. Resolution of the multidisciplinary panel of experts. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2024;124(7):145–153. (In Russ.) https://doi.org/10.17116/jnevro2024124071145.


Review

For citations:


Nesterovskiy YE. Cognitive and psycho-emotional disorders in children after traumatic brain injuries: Causes, clinical picture and therapy. Meditsinskiy sovet = Medical Council. 2025;(12):142-152. (In Russ.) https://doi.org/10.21518/ms2025-305

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)