Preview

Медицинский Совет

Расширенный поиск

Коррекция определенных патофизиологических звеньев сердечно-сосудисто-почечного метаболического синдрома (часть вторая): роль применения моксонидина

https://doi.org/10.21518/ms2025-444

Аннотация

Статья посвящена обсуждению проблемы остаточного риска развития осложнений сердечно-сосудистых заболеваний при лечении артериальной гипертонии (АГ) у пациентов с сердечно-сосудисто-почечным метаболическим синдромом (ССПМС). Рассматриваются современные рекомендации по тактике лечения АГ у пациентов с метаболическими факторами риска и необходимость достижения более низких целевых уровней АД в таких случаях. Приводятся данные, свидетельствующие о том, что недостаточное подавление активности симпатического отдела вегетативной нервной системы часто становится причиной такого остаточного риска. Подчеркивается высокая распространенность гиперсимпатикотонии у пациентов с ССПМС и ее отрицательное влияние на различные органы и системы. Представлена информация о том, что применение стандартных антигипертензивных препаратов не приводит к достаточному снижению активности симпатической нервной системы у пациентов с АГ. Обсуждаются результаты исследований, подтверждающих роль повышения симпатической активности у большого числа пациентов с ССПМС. Рассматриваются новые данные о возможной небезопасности использования b-блокаторов при лечении АГ, что обусловливает поиск альтернативных путей воздействия на симпатическую нервную систему при лечении АГ у пациентов с ССПМС. В связи с этим приводятся данные о возможностях длительного применения моксонидина в качестве одного из компонентов антигипертензивной терапии в такой клинической ситуации. Приводятся данные об антигипертензивной эффективности приема моксонидина. Указывается на возможность влияния приема моксонидина на скорость пульсовой волны. Рассматриваются не только антигипертензивное действие моксонидина, но и его плейотропные эффекты, включая влияние на маркеры аутофагии.

Об авторах

С. Р. Гиляревский
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова; Российская медицинская академия непрерывного профессионального образования
Россия

Гиляревский Сергей Руджерович, д.м.н., профессор, ведущий научный сотрудник; профессор кафедры клинической фармакологии и терапии имени академика Б.Е. Вотчала

129226, Россия, Москва, ул. 1-я Леонова, д. 16

125993, Россия, Москва, ул. Баррикадная, д. 2/1, стр. 1 



А. Ю. Щедрина
Российский национальный исследовательский медицинский университет имени Н.И. Пирогова
Россия

Щедрина Анна Юрьевна, к.м.н., заведующая кардиологическим отделением 

129226, Россия, Москва, ул. 1-я Леонова, д. 16



М. В. Голшмид
Российская медицинская академия непрерывного профессионального образования
Россия

Голшмид Мария Владимировна, к.м.н., доцент кафедры клинической фармакологии и терапии имени академика Б.Е. Вотчала

125993, Россия, Москва, ул. Баррикадная, д. 2/1, стр. 1



Список литературы

1. Ndumele CE, Rangaswami J, Chow SL, Neeland IJ, Tuttle KR, Khan SS et al. Cardiovascular-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association. Circulation. 2023;148(20):1606–1635. https://doi.org/10.1161/CIR.0000000000001184.

2. Kannel WB. Risk stratification in hypertension: new insights from the Framingham Study. Am J Hypertens. 2000;13(S1):3S–10S. https://doi.org/10.1016/s0895-7061(99)00252-6.

3. Kotsis V, Nilsson P, Grassi G, Mancia G, Redon J, Luft F et al. New developments in the pathogenesis of obesity-induced hypertension. J Hypertens. 2015;33(8):1499–1508. https://doi.org/10.1097/HJH.0000000000000645.

4. Carnagarin R, Tan K, Adams L, Matthews VB, Kiuchi MG, Marisol Lugo Gavidia L et al. Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD)-A Condition Associated with Heightened Sympathetic Activation. Int J Mol Sci. 2021;22(8):4241. https://doi.org/10.3390/ijms22084241.

5. Kiuchi MG, Ho JK, Nolde JM, Gavidia LML, Carnagarin R, Matthews VB, Schlaich MP. Sympathetic Activation in Hypertensive Chronic Kidney Disease – A Stimulus for Cardiac Arrhythmias and Sudden Cardiac Death?. Front Physiol. 2020;10:1546. https://doi.org/10.3389/fphys.2019.01546.

6. Carnagarin R, Lambert GW, Kiuchi MG, Nolde JM, Matthews VB, Eikelis N et al. Effects of sympathetic modulation in metabolic disease. Ann N Y Acad Sci. 2019;1454(1):80–89. https://doi.org/10.1111/nyas.14217.

7. Lambert EA, Esler MD, Schlaich MP, Dixon J, Eikelis N, Lambert GW. ObesityAssociated Organ Damage and Sympathetic Nervous Activity. Hypertension. 2019;73(6):1150–1159. https://doi.org/10.1161/HYPERTENSIONAHA.118.11676.

8. Carnagarin R, Matthews VB, Herat LY, Ho JK, Schlaich MP. Autonomic Regulation of Glucose Homeostasis: a Specific Role for Sympathetic Nervous System Activation. Curr Diab Rep. 2018;18(11):107. https://doi.org/10.1007/s11892-018-1069-2.

9. Carnagarin R, Matthews V, Gregory C, Schlaich MP. Pharmacotherapeutic strategies for treating hypertension in patients with obesity. Expert Opin Pharmacother. 2018;19(7):643–651. https://doi.org/10.1080/14656566.2018.1458092.

10. Thorp AA, Schlaich MP. Relevance of Sympathetic Nervous System Activation in Obesity and Metabolic Syndrome. J Diabetes Res. 2015;2015:341583. https://doi.org/10.1155/2015/341583.

11. Schlaich M, Straznicky N, Lambert E, Lambert G. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol. 2015;3(2):148–157. https://doi.org/10.1016/S2213-8587(14)70033-6.

12. Redon J, Cifkova R, Laurent S, Nilsson P, Narkiewicz K, Erdine S, Mancia G. The metabolic syndrome in hypertension: European society of hypertension position statement. J Hypertens. 2008;26(10):1891–1900. https://doi.org/10.1097/HJH.0b013e328302ca38.

13. Katsimardou A, Imprialos K, Stavropoulos K, Sachinidis A, Doumas M, Athyros V. Hypertension in Metabolic Syndrome: Novel Insights. Curr Hypertens Rev. 2020;16(1):12–18. https://doi.org/10.2174/1573402115666190415161813.

14. Schlaich MP, Tsioufis K, Taddei S, Ferri C, Cooper M, Sindone A et al. Targeting the sympathetic nervous system with the selective imidazoline receptor agonist moxonidine for the management of hypertension: an international position statement. J Hypertens. 2024;42(12):2025–2040. https://doi.org/10.1097/HJH.0000000000003769.

15. Wenzel RR, Spieker L, Qui S, Shaw S, Lüscher TF, Noll G. I1-imidazoline agonist moxonidine decreases sympathetic nerve activity and blood pressure in hypertensives. Hypertension. 1998;32(6):1022–1027. https://doi.org/10.1161/01.hyp.32.6.1022.

16. Sharma AM, Wagner T, Marsalek P. Moxonidine in the treatment of overweight and obese patients with the metabolic syndrome: a postmarketing surveillance study. J Hum Hypertens. 2004;18(9):669–675. https://doi.org/10.1038/sj.jhh.1001676.

17. Mitrovic V, Patyna W, Hüting J, Schlepper M. Hemodynamic and neurohumoral effects of moxonidine in patients with essential hypertension. Cardiovasc Drugs Ther. 1991;5(6):967–972. https://doi.org/10.1007/BF00143521.

18. Leuzzi C, Modena MG. Hypertension in postmenopausal women: pathophysiology and treatment. High Blood Press Cardiovasc Prev. 2011;18(1):13–18. https://doi.org/10.2165/11588030-000000000-00000.

19. Kim JM, Kim TH, Lee HH, Lee SH, Wang T. Postmenopausal hypertension and sodium sensitivity. J Menopausal Med. 2014;20(1):1–6. https://doi.org/10.6118/jmm.2014.20.1.1.

20. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–1904. https://doi.org/10.1172/JCI118235.

21. Wolk R, Shamsuzzaman AS, Somers VK. Obesity, sleep apnea, and hypertension. Hypertension. 2003;42(6):1067–1074. https://doi.org/10.1161/01.HYP.0000101686.98973.A3.

22. Qiao M, Xie Y, Wolff A, Kwon J. Long term adherence to continuous positive Airway pressure in mild obstructive sleep apnea. BMC Pulm Med. 2023;23(1):320. https://doi.org/10.1186/s12890-023-02612-3.

23. Azarbarzin A, Vena D, Esmaeili N, Wellman A, Pinilla L, Messineo L et al. Cardiovascular benefit of continuous positive airway pressure according to high-risk obstructive sleep apnoea: a multi-trial analysis. Eur Heart J. 2025:ehaf447. https://doi.org/10.1093/eurheartj/ehaf447.

24. Son HE, Ryu JY, Go S, Yi Y, Kim K, Oh YK et al. Association of ambulatory blood pressure monitoring with renal outcome in patients with chronic kidney disease. Kidney Res Clin Pract. 2020;39(1):70–80. https://doi.org/10.23876/j.krcp.19.103.

25. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021;100(4S):S1–S276. https://doi.org/10.1016/j.kint.2021.05.021.

26. Pugh D, Gallacher PJ, Dhaun N. Management of Hypertension in Chronic Kidney Disease. Drugs. 2019;79(4):365–379. https://doi.org/10.1007/s40265-019-1064-1.

27. Grassi G, Biffi A, Seravalle G, Bertoli S, Airoldi F, Corrao G et al. Sympathetic nerve traffic overactivity in chronic kidney disease: a systematic review and meta-analysis. J Hypertens. 2021;39(3):408–416. https://doi.org/10.1097/HJH.0000000000002661.

28. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116(6):991–1006. https://doi.org/10.1161/CIRCRESAHA.116.305697.

29. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–1305. https://doi.org/10.1056/NEJMoa041031.

30. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–1918. https://doi.org/10.1056/NEJM199212313272704.

31. Klein IHHT, Ligtenberg G, Oey PL, Koomans HA, Blankestijn PJ. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J Am Soc Nephrol. 2001;12(11):2427–2433. https://doi.org/10.1681/ASN.V12112427.

32. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–1979. https://doi.org/10.1161/01.cir.0000034043.16664.96.

33. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105(11):1354–1359. https://doi.org/10.1161/hc1102.105261.

34. SPRINT Research Group; Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015;373(22):2103–2116. https://doi.org/10.1056/NEJMoa1511939.

35. Zhang W, Zhang S, Deng Y, Wu S, Ren J, Sun G et al. Trial of Intensive BloodPressure Control in Older Patients with Hypertension. N Engl J Med. 2021;385(14):1268–1279. https://doi.org/10.1056/NEJMoa2111437.

36. Liu J, Li Y, Ge J, Yan X, Zhang H, Zheng X et al. Lowering systolic blood pressure to less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised trial. Lancet. 2024;404(10449):245–255. https://doi.org/10.1016/S0140-6736(24)01028-6.

37. Fugar S, Okoh AK, Dodoo C, Kolkailah AA, Okyne E, Özturk E et al. Effect of intensive and standard blood pressure control on cardiovascular outcomes based on body mass index: sub-analysis of the sprint trial. J Hum Hypertens. 2020;34(11):778–786. https://doi.org/10.1038/s41371-019-0296-6.

38. Yang R, Wang Y, Tong A, Yu J, Zhao D, Cai J. The Influence of baseline glycemic status on the effects of intensive blood pressure lowering: Results from the STEP randomized trial. Eur J Intern Med. 2023;113:75–82. https://doi.org/10.1016/j.ejim.2023.04.019.

39. Cheung AK, Rahman M, Reboussin DM, Craven TE, Greene T, Kimmel PL et al. Effects of Intensive BP Control in CKD. J Am Soc Nephrol. 2017;28(9):2812–2823. https://doi.org/10.1681/ASN.2017020148.

40. Schutte AE, Webster R, Jennings G, Schlaich MP. Uncontrolled blood pressure in Australia: a call to action. Med J Aust. 2022;216(2):61–63. https://doi.org/10.5694/mja2.51350.

41. Carnagarin R, Matthews V, Zaldivia MTK, Peter K, Schlaich MP. The bidirectional interaction between the sympathetic nervous system and immune mechanisms in the pathogenesis of hypertension. Br J Pharmacol. 2019;176(12):1839–1852. https://doi.org/10.1111/bph.14481.

42. Siddiqui M, Dudenbostel T, Calhoun DA. Resistant and Refractory Hypertension: Antihypertensive Treatment Resistance vs Treatment Failure. Can J Cardiol. 2016;32(5):603–606. https://doi.org/10.1016/j.cjca.2015.06.033.

43. Pathak A, Mrabeti S. β-Blockade for Patients with Hypertension, Ischemic Heart Disease or Heart Failure: Where are We Now? Vasc Health Risk Manag. 2021;17:337–348. https://doi.org/10.2147/VHRM.S285907.

44. Manolis AJ, Poulimenos LE, Kallistratos MS, Gavras I, Gavras H. Sympathetic overactivity in hypertension and cardiovascular disease. Curr Vasc Pharmacol. 2014;12(1):4–15. https://doi.org/10.2174/15701611113119990140.

45. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114(11):1804–1814. https://doi.org/10.1161/CIRCRESAHA.114.302524.

46. Grassi G, Seravalle G, Stella ML, Turri C, Zanchetti A, Mancia G. Sympathoexcitatory responses to the acute blood pressure fall induced by central or peripheral antihypertensive drugs. Am J Hypertens. 2000;13(1):29–34. https://doi.org/10.1016/s0895-7061(99)00150-8.

47. Grassi G. Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens. 2004;13(5):513–519. https://doi.org/10.1097/00041552-200409000-00006.

48. van Zwieten PA. Beneficial interactions between pharmacological, pathophysiological and hypertension research. J Hypertens. 1999;17(12):1787–1797. https://doi.org/10.1097/00004872-199917121-00002.

49. van Zwieten PA. Centrally acting antihypertensive drugs. Present and future. Clin Exp Hypertens. 1999;21(5-6):859–873. https://doi.org/10.3109/10641969909061015.

50. Shetty S, Bhoraskar A, Mohan JC, Chafekar D, Tripathi K, Sivalingam M et al. Selective Imidazoline Receptor Agonists: redefining the role of centrally acting agents in management of hypertension. Int J Adv Med. 2019;6(5):1688–1694. https://doi.org/10.18203/2349-3933.ijam20194234.

51. Sica DA. Centrally acting antihypertensive agents: an update. J Clin Hypertens 2007;9(5):399–405. https://doi.org/10.1111/j.1524-6175.2007.07161.x.

52. Sanidas E, Böhm M, Oikonomopoulou I, Dinopoulou P, Papadopoulos D, Michalopoulou H et al. Heart rate-lowering drugs and outcomes in hypertension and/or cardiovascular disease: a meta-analysis. Eur Heart J. 2025;46(27):2657–2669. https://doi.org/10.1093/eurheartj/ehaf291.

53. Vonend O, Marsalek P, Russ H, Wulkow R, Oberhauser V, Rump LC. Moxonidine treatment of hypertensive patients with advanced renal failure. J Hypertens. 2003;21(9):1709–1717. https://doi.org/10.1097/00004872-200309000-00021.

54. Littlewood KJ, Greiner W, Baum D, Zoellner Y. Adjunctive treatment with moxonidine versus nitrendipine for hypertensive patients with advanced renal failure: a cost-effectiveness analysis. BMC Nephrol. 2007;8:9. https://doi.org/10.1186/1471-2369-8-9.

55. Hausberg M, Tokmak F, Pavenstädt H, Krämer BK, Rump LC. Effects of moxonidine on sympathetic nerve activity in patients with end-stage renal disease. J Hypertens. 2010;28(9):1920–1927. https://doi.org/10.1097/HJH.0b013e32833c2100.

56. Dell’Oro R, Quarti-Trevano F, Ambrosino P, Grassi G. Sympathetic Responses to Antihypertensive Treatment Strategies : Implications for the Residual Cardiovascular Risk. Curr Hypertens Rep. 2025;27(1):21. https://doi.org/10.1007/s11906-025-01339-2.

57. Quarti-Trevano F, Seravalle G, Facchetti R, Tsioufis K, Dimitriadis K, Manta E et al. Failure of Antihypertensive Treatment to Restore Normal Sympathetic Activity. Hypertension. 2025;82(6):1024–1034. https://doi.org/10.1161/HYPERTENSIONAHA.124.24429.

58. Howard G, Muntner P, Lackland DT, Plante TB, Cushman M, Stamm B et al. Association of Duration of Recognized Hypertension and Stroke Risk: The REGARDS Study. Stroke. 2025;56(1):105–112. https://doi.org/10.1161/STROKEAHA.124.048385.

59. Kirch W, Hutt HJ, Plänitz V. Pharmacodynamic action and pharmacokinetics of moxonidine after single oral administration in hypertension patients. J Clin Pharmacol. 1990;30(12):1088–1095. https://doi.org/10.1002/j.1552-4604.1990.tb01850.x.

60. Pewowaruk R, Jaeger BC, Hughes TM, Upadhya B, Kitzman DW, Supiano MA, Gepner AD. Effects of Blood Pressure Control on Arterial Stiffness Mechanisms in SPRINT: A Randomized Controlled Trial. Hypertension. 2025;82(6):1004–1011. https://doi.org/10.1161/HYPERTENSIONAHA.124.24816.

61. Dudinskaya E, Tkacheva O, Bazaeva E, Matchekhina L, Eruslanova K, Sharashkina N et al. Influence of Moxonidine and Bisoprolol on Morphofunctional Condition of Arterial Wall and Telomerase Activity in Postmenopausal Women with Arterial Hypertension and Osteopenia. The Results from a Moscow Randomized Study. Cardiovasc Drugs Ther. 2022;36(6):1147–1155. https://doi.org/10.1007/s10557-021-07235-6.

62. Ebinç H, Ozkurt ZN, Ebinç FA, Ucardag D, Caglayan O, Yilmaz M. Effects of sympatholytic therapy with moxonidine on serum adiponectin levels in hypertensive women. J Int Med Res. 2008;36(1):80–87. https://doi.org/10.1177/147323000803600111.

63. El-Sayed SS, Rezq S, Alsemeh AE, Mahmoud MF. Moxonidine ameliorates cardiac injury in rats with metabolic syndrome by regulating autophagy. Life Sci. 2023;312:121210. https://doi.org/10.1016/j.lfs.2022.121210.

64. Hu X, Li D, Chen W, Kuang H, Yang D, Gong Z et al. Sodium Glucose Transporter 2 Inhibitor Protects Against Heart Failure With Preserved Ejection Fraction: Preclinical “2-Hit” Model Reveals Autophagy Enhancement Via AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Complex 1 Pathway. J Am Heart Assoc. 2025;14(16):e040093. https://doi.org/10.1161/JAHA.124.040093.


Рецензия

Для цитирования:


Гиляревский СР, Щедрина АЮ, Голшмид МВ. Коррекция определенных патофизиологических звеньев сердечно-сосудисто-почечного метаболического синдрома (часть вторая): роль применения моксонидина. Медицинский Совет. 2025;(16):19-27. https://doi.org/10.21518/ms2025-444

For citation:


Gilyarevskiy SR, Shchedrina AY, Golshmid MV. Correction of certain pathophysiological components of the cardiovascular-renal metabolic syndrome (part two): The role of moxonidine. Meditsinskiy sovet = Medical Council. 2025;(16):19-27. (In Russ.) https://doi.org/10.21518/ms2025-444

Просмотров: 119

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)