Preview

Meditsinskiy sovet = Medical Council

Advanced search

Features of ethotic transformation of leukocytes in pregnant women with placental disorders

https://doi.org/10.21518/ms2025-477

Abstract

Introduction. An important step in the development of the theory of netotic transformation of leukocytes was the emergence of facts about the ability to extrude DNA not only in neutrophils, but also in other cells of the innate immune system.

Aim. To quantitatively assess the release of intracellular DNA (extracellular traps) for neutrophils, eosinophils and basophils of peripheral blood at different stages of gestation during normal pregnancy and in pregnant women with placental disorders associated with thrombophilia.

Materials and methods. The study included 85 pregnant women aged 19 to 42 years (45 pregnant women with thrombophilia (protein S deficiency and protein C deficiency) and placental disorders (Group 1), 40 women with normal pregnancy (Group 2). Group 3 (control) consisted of 20 non-pregnant women. In dynamics (I, II and III trimesters), an analysis of the quantitative and qualitative composition of the peripheral blood leukocyte population was performed, the level of DNA traps for neutrophils (NETs), eosinophils (EETs) and basophils (BETs) was assessed.

Results. In pregnant women in Group 1, during the second and third trimesters, the total number of leukocytes increased in relation to the initial data by 1.4 and 1.8 times, respectively, mainly due to an increase in the neutrophil population. The absolute number of eosinophils by the second trimester increased by 25%, and by the third – by 50%. The level of basophils in the peripheral blood by the second trimester increased 2-fold, maintaining these values at 35–37 weeks.

Conclusions. Further studies of the features of the formation of NETs, EETs and BETs and the identification of correlations between the level of ethosis and the clinical picture are needed, which will contribute to understanding the mechanism of pathological tissue damage and the progression of immunothrombosis, and will determine potential therapeutic targets for the development of promising therapeutic strategies.

About the Authors

S. A. Gasparyan
State Scientific Center of the Russian Federation – Federal Medical Biophysical Center named after A.I. Burnazyan
Russian Federation

Susanna A. Gasparyan - Dr. Sci. (Med.), Professor, Professor of the Department of Obstetrics, Gynecology and Perinatology, Medical and Biological University of Innovations and Continuous Education.

46, Bldg. 8, Zhivopisnaya St., Moscow, 123098



I. A. Orfanova
Stavropol State Medical University
Russian Federation

Idiliya A. Orfanova - Postgraduate Student of the Departments of Obstetrics and Gynecology.

310, Mira St., Stavropol, 355017



I. A. Vasilenko
Russian State University named after A.N. Kosygin (Technology. Design. Art)
Russian Federation

Irina A. Vasilenko - Dr. Sci. (Med.), Professor, Professor of the Department of Inorganic and Analytical Chemistry.

33, Bldg. 1, Sadovnicheskaya St., Moscow, 117997



References

1. Hidalgo A, Libby P, Soehnlein O, Aramburu IV, Papayannopoulos V, Silvestre-Roig C. Neutrophil extracellular traps: from physiology to pathology. Cardiovasc Res. 2022;118(13):2737–2753. https://doi.org/10.1093/cvr/cvab329.

2. Kassina DV, Vasilenko IA, Gur’ev AS, Volkov AY, Metelin VB. Neutrophil extracellular traps: diagnostic and prognostic value in COVID-19. Almanac of Clinical Medicine. 2020;48(Suppl. 1):43–50. (In Russ.) https://doi.org/10.18786/2072-0505-2020-48-029.

3. Kisina TE, Vorobyeva NA. Extracellular traps: a new function of neutrophils and their role in inflammation and hemostasis. Vestnik SurGU. Medicina. 2024;17(4):63–74. (In Russ.) https://doi.org/10.35266/2949-3447-2024-4-9.

4. Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC et al. Diversity and complexity of cell death: a historical review. Exp Mol Med. 2023;55(8):1573–1594. https://doi.org/10.1038/s12276-023-01078-x.

5. Nija RJ, Sanju S, Sidharthan N, Mony U. Extracellular Trap by Blood Cells: Clinical Implications. Tissue Eng Regen Med. 2020;17(2):141–153. https://doi.org/10.1007/s13770-020-00241-z.

6. Wang Y, Du C, Zhang Y, Zhu L. Composition and Function of Neutrophil Extracellular Traps. Biomolecules. 2024;14(4):416. https://doi.org/10.3390/biom14040416.

7. Singhal A, Kumar S. Neutrophil and remnant clearance in immunity and inflam-mation. Immunology. 2022;165(1):22–43. https://doi.org/10.1111/imm.13423.

8. Zhu S, Yu Y, Ren Y, Xu L, Wang H, Ling X et al. The emerging roles of neutrophil extracellular traps in wound healing. Cell Death Dis. 2021;12(11):984. https://doi.org/10.1038/s41419-021-04294-3.

9. Fernández-Lázaro D, Sanz B, Seco-Calvo J. The Mechanisms of Regulated Cell Death: Structural and Functional Proteomic Pathways Induced or Inhibited by a Specific Protein-A Narrative Review. Proteomes. 2024;12(1):3. https://doi.org/10.3390/proteomes12010003.

10. Koh CC, Gollob KJ, Dutra WO. Balancing the functions of DNA extracellular traps in intracellular parasite infections: implications for host defense, disease pathology and therapy. Cell Death Dis. 2023;14(7):450. https://doi.org/10.1038/s41419-023-05994-8.

11. Mankan AK, Czajka-Francuz P, Prendes M, Ramanan S, Koziej M, Vidal L, Saini KS. Intracellular DNA sensing by neutrophils and amplification of the innate immune response. Front Immunol. 2023;14:1208137. https://doi.org/10.3389/fimmu.2023.1208137

12. Navegantes KC, de Souza Gomes R, Pereira PAT, Czaikoski PG, Azevedo CHM, Monteiro MC. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med. 2017;15(1):36. https://doi.org/10.1186/s12967-017-1141-8.

13. Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H et al. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther. 2024;9(1):235. https://doi.org/10.1038/s41392-024-01933-x.

14. Kaplan MJ. Exploring the Role of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus: A Clinical Case Study and Comprehensive Review. Arthritis Rheumatol. 2025;77(3):247–252. https://doi.org/10.1002/art.43019.

15. Yao M, Ma J, Wu D, Fang C, Wang Z, Guo T, Mo J. Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to therapy. Front Immunol. 2023;14:1198952. https://doi.org/10.3389/fimmu.2023.1198952.

16. Gebere YF, Bimerew LG, Malko WA, Fenta DA. Hematological and CD4+ Tcell count reference interval for pregnant women attending antenatal care at Hawassa University Comprehensive Specialized Hospital, Hawassa Southern Ethiopia. PLoS ONE. 2021;16(4):e0249185. https://doi.org/10.1371/journal.pone.0249185.

17. Bitsadze VO, Slukhanchuk EV, Khizroeva JKh, Tretyakova MV, Shkoda AS, Radetskaya LS, Makatsariya AD et al. Extracellular Neutrophil Traps (NETs) in the Pathogenesis of Thrombosis and Thromboinflammation. Annals of the Russian Academy of Medical Sciences. 2021;76(1):75–85. (In Russ.) https://doi.org/10.15690/vramn1395.

18. Makatsariya AD, Slukhanchuk EV, Bitsadze VO, Khizroeva JKh, Tretyakova MV, Makatsariya NA et al. Neutrophil extracellular traps: a role in inflammation and dysregulated hemostasis as well as in patients with COVID-19 and severe obstetric pathology. Obstetrics, Gynecology and Reproduction. 2021;15(4):335–350. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.238.

19. Gimeno-Molina B, Muller I, Kropf P, Sykes L. The Role of Neutrophils in Pregnancy, Term and Preterm Labour. Life. 2022;12(10):1512. https://doi.org/10.3390/life12101512.

20. De Nardi AC, Coy-Canguçu A, Saito A, Florio MF, Marti G, Degasperi GR, Orsi FA. Immunothrombosis and its underlying biological mechanisms. Hematol Transfus Cell Ther. 2024;46(1):49–57. https://doi.org/10.1016/j.htct.2023.05.008.

21. Guimarães-Costa AB, Nascimento MT, Wardini AB, Pinto-da-Silva LH, Saraiva EM. ETosis: A Microbicidal Mechanism beyond Cell Death. J Parasitol Res. 2012;2012:929743. https://doi.org/10.1155/2012/929743.

22. Rasmussen KH, Hawkins CL. Role of macrophage extracellular traps in innate immunity and inflammatory disease. Biochem Soc Trans. 2022;50(1):21–32. https://doi.org/10.1042/BST20210962.

23. Гурьев АС, Мосальская ДВ, Волков АЮ. Способ определения относительного количества этотически трансформированных фагоцитов. Патент RU №2712179: МПК G01N 33/48, G01N 33/49. 24.01.2020. Режим доступа: https://patents.google.com/patent/RU2712179C1/ru.

24. Fettrelet T, Gigon L, Karaulov A, Yousefi S, Simon HU. The Enigma of Eosinophil Degranulation. Int J Mol Sci. 2021;22(13):7091. https://doi.org/10.3390/ijms22137091.

25. Kim HJ, Jung Y. The Emerging Role of Eosinophils as Multifunctional Leukocytes in Health and Disease. Immune Netw. 2020;20(3):e24. https://doi.org/10.4110/in.2020.20.e24.

26. Tomizawa H, Yamada Y, Arima M, Miyabe Y, Fukuchi M, Hikichi H et al. Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules. 2022;12(10):1385. https://doi.org/10.3390/biom12101385.

27. Prilutskij AS, Sorokina OV, Prilutskaia OA, Baranova OV. Eosinophils in normal and pathological conditions. Structure, mediators, development. Allergology and Immunology in Pediatrics. 2023;(1):5–15. (In Russ.) https://doi.org/10.53529/2500-1175-2023-1-5-15.

28. Чернов ИП, Ененков НВ. Тканевые эозинофилы и их роль в патологии. В: Костюкевич СВ (ред.). Вопросы морфологии XXI века. Выпуск 7. СПб.: Издательство ДЕАН; 2023. С. 344–350. Режим доступа: https://biomed.szgmu.ru/morphology/v7/74%20Чернов.pdf.

29. Hashimoto T, Ueki S, Kamide Y, Miyabe Y, Fukuchi M, Yokoyama Y et al. Increased Circulating Cell-Free DNA in Eosinophilic Granulomatosis With Polyangiitis: Implications for Eosinophil Extracellular Traps and Immunothrombosis. Front Immunol. 2022;12:801897. https://doi.org/10.3389/fimmu.2021.801897.

30. Bychkova NV. Basophil activation: theoretical aspects and use in the diagnosis of allergic diseases. Medical Immunology (Russia). 2021;23(3):469–482. (In Russ.) https://doi.org/10.15789/1563-0625-BAT-2174.

31. Shah H, Eisenbarth S, Tormey CA, Siddon AJ. Behind the scenes with basophils: an emerging therapeutic target. Immunother Adv. 2021;1(1):ltab008. https://doi.org/10.1093/immadv/ltab008.

32. Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol. 2022;12:869706. https://doi.org/10.3389/fonc.2022.869706.


Review

For citations:


Gasparyan SA, Orfanova IA, Vasilenko IA. Features of ethotic transformation of leukocytes in pregnant women with placental disorders. Meditsinskiy sovet = Medical Council. 2025;(17):74-80. (In Russ.) https://doi.org/10.21518/ms2025-477

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)