Epigenetic aspects of preconceptional folate supplementation
https://doi.org/10.21518/ms2025-453
Abstract
Folates (vitamin B9) are essential for one-carbon metabolism, nucleotide synthesis, and DNA methylation, playing a central role in embryonic and placental development. Folate deficiency is associated with neural tube defects, pregnancy complications, and mental health disorders, including perinatal depression. Several studies have shown that inadequate dietary intake of folate may disrupt this pathway and reduce DNA methylation, a major epigenetic factor influencing gene activities. DNA methylation during fetal development plays a critical role in regulating fundamental biological processes such as imprinting, X-chromosome inactivation, differentiation, and pluripotency. Objective – to summarize recent evidence (2023–2025) on the role of folates during pregnancy, with a focus on epigenetic mechanisms, the Developmental Origins of Health and Disease (DOHaD) concept, offspring cognitive outcomes, and opportunities for personalized nutritional support. The review highlights experimental and clinical findings on the impact of folates on epigenetic regulation, placental function, and longterm offspring health. Supplementation is shown to reduce the risk of neural tube defects, preeclampsia, and intrauterine growth restriction. Associations between maternal folate status, child cognitive development, and perinatal depression are discussed. Special attention is given to monitoring biomarkers (red blood cell folate, homocysteine, vitamin B12) and genetic predictors (MTHFR polymorphisms) to justify a personalized approach. Adequate folate intake in the periconceptional period and throughout pregnancy is crucial for preventing obstetric and psychiatric complications and shaping favorable long-term offspring outcomes. Personalized supplementation strategies based on biomarkers and genetic data represent a promising avenue for clinical practice.
About the Authors
E. V. ShikhRussian Federation
Evgenia V. Shikh - Dr. Sci. (Med.), Professor, Head of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases.
8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. A. Makhova
Russian Federation
Anna A. Makhova, Dr. Sci. (Med.), Associate Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases.
8, Bldg. 2, Trubetskaya St., Moscow, 119991
References
1. Putintseva AV, Shikh EV. Association of genetic polymorphisms of folate cycle enzymes with risk of pregnancy complications. Gynecology, Obstetrics and Perinatology. 2023;22(2):28–32. (In Russ.) https://doi.org/10.20953/ 1726-1678-2023-2-28-32.
2. Barry MJ, Nicholson WK, Silverstein M, Chelmow D, Coker TR, Davis EM et al. Folic Acid Supplementation to Prevent Neural Tube Defects: US Preventive Services Task Force Reaffirmation Recommendation Statement. JAMA. 2023;330(5):454–459. https://doi.org/10.1001/jama.2023.12876.
3. Balashova MS, Nikitin IA, Orlova OYu, Mutallibzoda Sh, Shiryaeva MM, Semeykina VI, Zhuchenko NA. Folate intake: literature review and results of an adapted Food Frequency Questionnaire. Nutrition. 2023;13(1):21–29. (In Russ.) https://doi.org/10.20953/2224-5448-2023-1-21-29.
4. Shikh EV, Makhova AA. Problems in the choice of a folate formulation for correction of folate status. Akusherstvo i Ginekologiya (Russian Federation). 2018;(8):33–40. (In Russ.) https://doi.org/10.18565/aig.2018.8.33-40.
5. Konwar Ch, Del Gobbo G, Yuan V, Robinson WP. Considerations when processing and interpreting genomics data of the placenta. Placenta. 2019;84:57–62. https://doi.org/10.1016/j.placenta.2019.01.006.
6. Bianco-Miotto T, Craig JM, Gasser YP, van Dijk SJ, Ozanne SE. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis. 2017;8(5):513–519. https://doi.org/10.1017/S2040174417000733.
7. van Vliet MM, Schoenmakers S, Gribnau J, Steegers-Theunissen RPM. The one-carbon metabolism as an underlying pathway for placental DNA methylation – a systematic review. Epigenetics. 2024;19(1):2318516. https://doi.org/10.1080/15592294.2024.2318516.
8. van Otterdijk SD, Klett H, Boerries M, Michels KB. The impact of prepregnancy folic acid intake on placental DNA methylation in a fortified cohort. FASEB J. 2023;37(1):e22698. https://doi.org/10.1096/fj.202200476RR.
9. Shikh EV, Makhova AA. The endemicity of an area in terms of micronutrient deficiencies as a criterion for compounding a basic vitamin-mineral complex for the periconceptional period. Akusherstvo i Ginekologiya (Russian Federation). 2018;(10):25–32. (In Russ.) https://doi.org/10.18565/aig.2018.10.25-32.
10. Shikh EV, Makhova AA. Key micronutrients of the reproductive period – folates and docosahexaenoic omega-3 polyunsaturated acid – in prevention of perinatal depression. Gynecology, Obstetrics and Perinatology. 2020;19(2): 78–84. (In Russ.) https://doi.org/10.20953/1726-1678-2020-2-78-84.
11. Mikhailyukova V.A. An Ideal Folate: Myth or Reality? Doctor.Ru. 2020;19(8): 55–60. (In Russ.) https://doi.org/10.31550/1727-2378-2020-19-8-55-60.
12. ACOG Committee Opinion No. 762: Prepregnancy Counseling. Obstet Gynecol. 2019;133(1):e78–e89. https://doi.org/10.1097/AOG.0000000000003013.
13. Долгушина НВ, Шмаков РГ, Баранов ИИ, Баев ОР, Павлович СВ, Прялухин ИА и др. Нормальная беременность: клинические рекомендации. 2023. Режим доступа: https://cr.minzdrav.gov.ru/preview-cr/288_2.
14. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14(3):204–220. https://doi.org/10.1038/nrg3354.
15. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607. https://doi.org/10.1038/s41580-019-0159-6.
16. McKee SE, Zhang S, Chen L, Rabinowitz JD, Reyes TM. Perinatal high fat diet and early life methyl donor supplementation alter one carbon metabolism and DNA methylation in the brain. J Neurochem. 2018;145(5):362–373. https://doi.org/10.1111/jnc.14319.
17. Korsmo HW, Jiang X. One carbon metabolism and early development: a diet-dependent destiny. Trends Endocrinol Metab. 2021;32(8):579–593. https://doi.org/10.1016/j.tem.2021.05.011.
18. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132(Suppl. 8):2393S–2400S. https://doi.org/10.1093/jn/132.8.2393S.
19. Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA et al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS ONE. 2009;4(11):e7845. https://doi.org/10.1371/journal.pone.0007845.
20. Mahajan A, Sapehia D, Thakur S, Mohanraj PS, Bagga R, Kaur J. Effect of imbalance in folate and vitamin B12 in maternal/parental diet on global methylation and regulatory miRNAs. Sci Rep. 2019;9(1):17602. https://doi.org/10.1038/s41598-019-54070-9.
21. Gabory A, Ferry L, Fajardy I, Jouneau L, Gothié JD, Vigé A et al. Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS ONE. 2012;7(11):e47986. https://doi.org/10.1371/journal.pone.0047986.
22. Nelissen EC, Dumoulin JC, Daunay A, Evers JL, Tost J, van Montfoort AP. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Hum Reprod. 2013;28(4):1117–1126. https://doi.org/10.1093/humrep/des459.
23. Lou H, Le F, Zheng Y, Li L, Wang L, Wang N et al. Assisted reproductive technologies impair the expression and methylation of insulin-induced gene 1 and sterol regulatory element-binding factor 1 in the fetus and placenta. Fertil Steril. 2014;101(4):974–980. https://doi.org/10.1016/j.fertnstert.2013.12.034.
24. Chen J, Li Q, Rialdi A, Mystal E, Ly J, Finik J et al. Influences of Maternal Stress during Pregnancy on the Epi/genome: Comparison of Placenta and Umbilical Cord Blood. J Depress Anxiety. 2014;3(2):152. https://doi.org/10.4172/2167-1044.1000152.
25. Dou JF, Middleton LYM, Zhu Y, Benke KS, Feinberg JI, Croen LA et al. Prenatal vitamin intake in first month of pregnancy and DNA methylation in cord blood and placenta in two prospective cohorts. Epigenetics Chromatin. 2022;15(1):28. https://doi.org/10.1186/s13072-022-00460-9.
26. Castaño-Moreno R, Piñuñuri ER, Peñailillo R, Casanello P, Llanos M, Ronco AM. Chapter 18 – Folates transport in placentas. In: Patel VB (ed.). Molecular Nutrition: Vitamins. Academic Press; 2020; pp. 345–365. https://doi.org/10.1016/B978-0-12-811907-5.00009-9.
27. Piñuñuri R, Castaño-Moreno E, Llanos MN, Ronco AM. Epigenetic regulation of folate receptor-α (FOLR1) in human placenta of preterm newborns. Placenta. 2020;94:20–25. https://doi.org/10.1016/j.placenta.2020.03.009.
28. Chen YY, Gupta MB, Grattton R, Powell TL, Jansson T. Down-regulation of placental folate transporters in intrauterine growth restriction. J Nutr Biochem. 2018;59:136–141. https://doi.org/10.1016/j.jnutbio.2018.06.003.
29. Ondičová M, Irwin RE, Thursby SJ, Hilman L, Caffrey A, Cassidy T et al. Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms. Clin Epigenetics. 2022;14(1):63. https://doi.org/10.1186/s13148-022-01282-y.
30. Caffrey A, Irwin RE, McNulty H, Strain JJ, Lees-Murdock DJ, McNulty BA et al. Gene-specific DNA methylation in newborns in response to folic acid supplementation during the second and third trimesters of pregnancy: epigenetic analysis from a randomized controlled trial. Am J Clin Nutr. 2018;107(4):566–575. https://doi.org/10.1093/ajcn/nqx069.
31. Sainty R, Silver MJ, Prentice AM, Monk D. The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta. Front Cell Dev Biol. 2023;11:1212199. https://doi.org/10.3389/fcell.2023.1212199.
32. Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients. 2024;16(12):1860. https://doi.org/10.3390/nu16121860.
33. Jedynak P, Siroux V, Broséus L, Tost J, Busato F, Gabet S et al. Epigenetic footprints: Investigating placental DNA methylation in the context of prenatal exposure to phenols and phthalates. Environ Int. 2024;189:108763. https://doi.org/10.1016/j.envint.2024.108763.
34. Caffrey A, Irwin RE, McNulty H, Strain JJ, Lees-Murdock DJ, McNulty BA et al. Gene-specific DNA methylation in newborns in response to folic acid supplementation during the second and third trimesters of pregnancy: epigenetic analysis from a randomized controlled trial. Am J Clin Nutr. 2018;107(4):566–575. https://doi.org/10.1093/ajcn/nqx069.
35. Ondičová M, Irwin RE, Thursby SJ, Hilman L, Caffrey A, Cassidy T et al. Folic acid intervention during pregnancy alters DNA methylation, affecting neural target genes through two distinct mechanisms. Clin Epigenet 2022;14(1):63. https://doi.org/10.1186/s13148-022-01282-y.
36. Nishigori H, Nishigori T, Obara T, Suzuki T, Mori M, Imaizumi K et al. Prenatal folic acid supplement/dietary folate and cognitive development in 4-year-old offspring from the Japan Environment and Children’s Study. Sci Rep. 2023;13(1):9541. https://doi.org/10.1038/s41598-023-36484-8.
37. Alampi JD, Lanphear BP, MacFarlane AJ, Oulhote Y, Braun JM, Muckle G et al. Combined Exposure to Folate and Lead during Pregnancy and Autistic-Like Behaviors among Canadian Children from the MIREC Pregnancy and Birth Cohort. Environ Health Perspect. 2024;132(10):107003. https://doi.org/10.1289/EHP14479.
38. Woody CA, Ferrari AJ, Siskind DJ, Whiteford HA, Harris MG. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J Affect Disord. 2017;219:86–92. https://doi.org/10.1016/j.jad.2017.05.003.
39. Shorey S, Chee CYI, Ng ED, Chan YH, Tam WWS, Chong YS. Prevalence and incidence of postpartum depression among healthy mothers: A systematic review and meta-analysis. J Psychiatr Res. 2018;104:235–248. https://doi.org/10.1016/j.jpsychires.2018.08.001.
40. Shidhaye P, Giri P. Maternal depression: a hidden burden in developing countries. Ann Med Health Sci Res. 2014;4(4):463–465. https://doi.org/10.4103/2141-9248.139268.
41. Mischoulon D, Raab NF. The role of folate in depression and dementia. J Clin Psychiatry. 2007;68(10):28–33. Available at: https://pubmed.ncbi.nlm.nih.gov/17900207.
42. Farah A. The Role of L-methylfolate in depressive disorders. CNS Drugs. 2009;14(2):2–7. https://doi.org/10.1017/S1092852900003473.
43. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106. https://doi.org/10.4161/epi.3.2.6034.
44. Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006;5(11):949–960. https://doi.org/10.1016/S1474-4422(06)70598-1.
45. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–457. https://doi.org/10.1016/j.biopsych.2009.09.033.
46. Liu JJ, Wei YB, Hawi Z, Cummins T, Tong J, Johnson B et al. The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry 2015;20(3):289–297. https://doi.org/10.1038/mp.2014.183.
47. Bender A, Hagan KE, Kingston N. The association of folate and depression: A meta-analysis. J Psychiatr Res. 2017;95:9–18. https://doi.org/10.1016/j.jpsychires.2017.07.019.
48. Gao S, Khalid A, Amini-Salehi E, Radkhah N, Jamilian P, Badpeyma M, Zarezadeh M. Folate supplementation as a beneficial add-on treatment in relieving depressive symptoms: A meta-analysis of meta-analyses. Food Sci Nutr. 2024;12(6):3806–3818. https://doi.org/10.1002/fsn3.4073.
49. Liwinski T, Lang UE. Folate and Its Significance in Depressive Disorders and Suicidality: A Comprehensive Narrative Review. Nutrients. 2023;15(17):3859. https://doi.org/10.3390/nu15173859.
50. Jiang W, Xu J, LU X-J, Sun Ya. Association between MTHFR C677T polymorphism and depression: a meta-analysis in the Chinese population. Psychol Health Med. 2016;21(6):675–685. https://doi.org/10.1080/13548506.2015.1120327.
51. Hecker J, Leiton R, Parker RW. Adverse Effects of Excessive Folic Acid Consumption and Its Implications for Individuals With the Methylenetetrahydrofolate Reductase C677T Genotype. Cureus. 2025;17(2):e79374. https://doi.org/10.7759/cureus.793752.
52. Nemykina IS, Tkachuk AS, Popova PV. Genetics and epigenetics of gestational diabetes mellitus. Russian Journal for Personalized Medicine. 2023;3(6):21–28. (In Russ.) https://doi.org/10.18705/2782-3806-2023-3-6-21-28.
Review
For citations:
Shikh EV, Makhova AA. Epigenetic aspects of preconceptional folate supplementation. Meditsinskiy sovet = Medical Council. 2025;(17):104-112. (In Russ.) https://doi.org/10.21518/ms2025-453


































