Preview

Meditsinskiy sovet = Medical Council

Advanced search

New possibilities for activating tympanic membrane regeneration

https://doi.org/10.21518/ms2025-450

Abstract

The article describes the problem of perforation of the tympanic membrane, which remains one of the most pressing in modern otolaryngology. A classification of tympanic membrane defects is given, debatable issues of the need and timing of surgical treatment are discussed. For a better understanding of the healing processes, the structure of the tympanic membrane is described in detail. A review of the literature on the regeneration of the tympanic membrane is conducted, indicating the cellular processes occurring at different stages of its recovery. A separate section of the article is devoted to regeneration disorders leading to the formation of persistent perforation of the tympanic membrane. The causes of this pathology are analyzed. The authors paid special attention to the review of works devoted to latent epithelial stem cells that were found in the tympanic membrane. The presence of intrinsic regenerative potential in the form of epithelial progenitor cells, as well as knowledge of their localization, suggest that stimulation of their differentiation and proliferation leads to closure of both acute and chronic perforation of the tympanic membrane. Using tissue engineering methods, it is possible to initiate regeneration of these cells. The authors of this article draw attention to a new alternative to classical surgical treatment method for restoring tympanic membrane defects, namely, activation of its regenerative centers using laser radiation. It has an effect at the cellular and molecular levels, restoring metabolism and microcirculation of tissues. The effects of laser radiation on the stimulation of various cells are presented. The authors of the article describe the advantages of laser stimulation of the endogenous regenerative potential of the tympanic membrane and the prospects for its use in clinical practice.

About the Authors

O. I. Baum
National Research Centre “Kurchatov Institute”
Russian Federation

Olga I. Baum, Dr. Sci. (Phys.-Math.), Leading Researcher and Head of the Biophotonics Laboratory, Kurchatov Complex of Crystallography and Photonics

1, Academician Kurchatov Square, Moscow, 123182



A. V. Zolotova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Anna V. Zolotova, Cand. Sci. (Med.), Associate Professor, Associate Professor of the Department of Ear, Nose and Throat Diseases

8, Bldg. 2, Trubetskaya St., Moscow, 119991



E. M. Kasianenko
National Research Centre “Kurchatov Institute”
Russian Federation

Ekaterina M. Kasianenko, Researcher, Kurchatov Complex of Crystallography and Photonics

1, Academician Kurchatov Square, Moscow, 123182



M. V. Svistushkin
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Mikhail V. Svistushkin, Cand. Sci. (Med.), Associate Professor of the Department of Ear, Nose and Throat Diseases

8, Bldg. 2, Trubetskaya St., Moscow, 119991



E. V. Blinova
Sechenov First Moscow State Medical University (Sechenov University); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Ekaterina V. Blinova, Dr. Sci. (Med.), Professor, Head of the Department of Fundamental Medicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Professor of the Department of Operative Surgery and Topographic Anatomy, Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University)

31, Kashirskoye Shosse, Moscow, 115409,

8, Bldg. 2, Trubetskaya St., Moscow, 119991



V. M. Svistushkin
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Valeriy M. Svistushkin, Dr. Sci. (Med.), Professor, Head of the Department of Ear, Nose and Throat Diseases

8, Bldg. 2, Trubetskaya St., Moscow, 119991



References

1. Lim DJ. Structure and function of the tympanic membrane: a review. Acta Otorhinolaryngol Belg. 1995;49(2):101–115. Available at: https://pubmed.ncbi.nlm.nih.gov/7610903/.

2. Volandri G, Di Puccio F, Forte P, Carmignani C. Biomechanics of the tympanic membrane. J Biomech. 2011;44(7):1219–1236. https://doi.org/10.1016/j.jbiomech.2010.12.023.

3. Ejeah-Braimoh O, Baselt B, Röösli C. Retrospective long-term analysis of tympanoplasty in children. Int J Pediatr Otorhinolaryngol. 2025;196:112474. https://doi.org/10.1016/j.ijporl.2025.112474.

4. Kanemaru SI, Umeda H, Kitani Y, Nakamura T, Hirano S, Ito J. Regenerative Treatment for Tympanic Membrane Perforation. Otol Neurotol. 2011;32(8):1218–1223. https://doi.org/10.1097/mao.0b013e31822e0e53.

5. von Unge M, Hultcrantz M. The early events in the healing of laserproduced tympanic membrane perforation. Acta Otolaryngol. 2010;131(5):480–487. https://doi.org/10.3109/00016489.2010.533696.

6. Zhao X, Zhang J, Tian P, Cui X. The latest progress of tympanic membrane repair materials. Am J Otolaryngol. 2022;43(5):103408. https://doi.org/10.1016/j.amjoto.2022.103408.

7. Helms J. Moderne Aspekte der Tympanoplastik. Modern aspects of tympanoplasty. An overview. Laryngorhinootologie. 1995;74(8):465–467. (In German) https://doi.org/10.1055/s-2007-997782.

8. Garov EV, Sidorina NG, Zelenkova VN, Lavrova AS, Akmuldieva NR. Analysis of the effectiveness of tympanoplasty in the patients presenting with chronic otitis media complicated by perforation. Vestnik Oto-RinoLaringologii. 2014;(6):8–11. (In Russ.) https://doi.org/10.17116/otorino201468-11.

9. Zahnert T, Hüttenbrink KB, Mürbe D, Bornitz M. Experimental investigations of the use of cartilage in tympanic membrane reconstruction. Am J Otol. 2000;21(3):322–328. Available at: https://journals.lww.com/otology-neurotology/Abstract/2000/05000/Experimental_Investigations_of_the_Use_of.5.aspx.

10. Dornhoffer JL. Cartilage tympanoplasty. Otolaryngol Clin North Am. 2006;39(6):1161–1176. https://doi.org/10.1016/j.otc.2006.08.006.

11. Desaulty A, Lansiaux V, Machiels S, Gael JF. Failures after tympanoplasty. Rev Laryngol Otol Rhinol. 1996;117(5):357–361. (In French) Available at: https://pubmed.ncbi.nlm.nih.gov/9183906/.

12. Kuypers LC, Decraemer WF, Dirckx JJ. Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otol Neurotol. 2006;27(2):256–264. https://doi.org/10.1097/01.mao.0000187044.73791.92.

13. Hentzer E. Ultrastructure of the human tympanic membrane. Acta Otolaryngol. 1969;68(1-6):376–390. https://doi.org/10.3109/00016486909121576.

14. Knutsson J, Bagger-Sjöbäck D, von Unge M. Collagen type distribution in the healthy human tympanic membrane. Otol Neurotol. 2009;30(8):1225–1229. https://doi.org/10.1097/MAO.0b013e3181c0e621.

15. Makuszewska M, Bonda T, Cieślińska M, Bialuk I, Winnicka MM, Niemczyk K. Expression of collagen type III in healing tympanic membrane. Int J Pediatr Otorhinolaryngol. 2020;136:110196. https://doi.org/10.1016/j.ijporl.2020.110196.

16. Kanemaru SI, Kanai R, Omori K, Yamamoto N, Okano T, Kishimoto I et al. Multicenter phase III trial of regenerative treatment for chronic tympanic membrane perforation. Auris Nasus Larynx. 2021;48(6):1054–1060. https://doi.org/10.1016/j.anl.2021.02.007.

17. Kim SW, Kim J, Seonwoo H, Jang KJ, Kim YJ, Lim HJ et al. Latent progenitor cells as potential regulators for tympanic membrane regeneration. Sci Rep. 2015;5:11542. https://doi.org/10.1038/srep11542.

18. Orji FT, Agu CC. Determinants of spontaneous healing in traumatic perforations of the tympanic membrane. Clin Otolaryngol. 2008;33(5):420–426. https://doi.org/10.1111/j.1749-4486.2008.01764.x.

19. Ritenour AE, Wickley A, Ritenour JS, Kriete BR, Blackbourne LH, Holcomb JB, Wade CE. Tympanic membrane perforation and hearing loss from blast overpressure in Operation Enduring Freedom and Operation Iraqi Freedom wounded. J Trauma. 2008;64(2 Suppl.):S174–S178. https://doi.org/10.1097/TA.0b013e318160773e.

20. Onifade A, Katolo HW, Mookerjee S, Bhutta MF. Epidemiology of Chronic Suppurative Otitis Media: Systematic Review To Estimate Global Prevalence. J Epidemiol Glob Health. 2025;15(1):55. https://doi.org/10.1007/s44197-025-00396-9.

21. Koder A, Bulut E, Arslan M, Ersoy O. Locally applied platelet-rich fibrin enhances healing of experimental tympanic membrane perforations in rats: an experimental study. Eur J Med Res. 2025;30(1):638. https://doi.org/10.1186/s40001-025-02889-6.

22. Seonwoo H, Kim SW, Kim J, Chunjie T, Lim KT, Kim YJ et al. Regeneration of chronic tympanic membrane perforation using an EGF-releasing chitosan patch. Tissue Eng Part A. 2013;19(17-18):2097–2107. https://doi.org/10.1089/ten.TEA.2012.0617.

23. Kristensen S. Spontaneous healing of traumatic tympanic membrane perforations in man: A century of experience. J Laryngol Otol. 1992;106(12):1037–1050. https://doi.org/10.1017/s0022215100121723.

24. Gladstone HB, Jackler RK, Varav K. Tympanic membrane wound healing. An overview. Otolaryngol Clin North Am. 1995;28(5):913–932. Available at: https://www.sci-hub.ru/10.1016/s0030-6665(20)30467-9.

25. Liew LJ, Wang AY, Dilley RJ. Isolation of Epidermal Progenitor Cells from Rat Tympanic Membrane. Methods Mol Biol. 2019;2029:247–255. https://doi.org/10.1007/978-1-4939-9631-5_19.

26. Johnson A, Hawke M. An ultrastructural study of the skin of the tympanic membrane and external ear canal of the guinea pig. J Otolaryngol. 1985;14(6):357–364. Available at: https://pubmed.ncbi.nlm.nih.gov/4078955.

27. Reeve DR. The mitotic response of the stratified squamous epithelium at the edge of large perforations of the tympanic membrane in guineapigs. J Anat. 1977;124(Pt 3):731–740. Available at: https://europepmc.org/article/pmc/pmc1234669.

28. Rahman A, Hultcrantz M, Dirckx J, Margolin G, von Unge M. Fresh tympanic membrane perforations heal without significant loss of strength. Otol Neurotol. 2005;26(6):1100–1106. https://doi.org/10.1097/01.mao.0000194886.59270.34.

29. Lou ZC, Tang YM, Yang J. A prospective study evaluating spontaneous healing of aetiology, size and type-different groups of traumatic tympanic membrane perforation. Clin Otolaryngol. 2011;36(5):450–460. https://doi.org/10.1111/j.1749-4486.2011.02387.x.

30. Santa Maria PL, Atlas MD, Ghassemifar R. Chronic tympanic membrane perforation: a better animal model is needed. Wound Repair Regen. 2007;15(4):450–458. https://doi.org/10.1111/j.1524-475X.2007.00251.x.

31. Wang AY, Shen Y, Wang JT, Friedland PL, Atlas MD, Dilley RJ. Animal models of chronic tympanic membrane perforation: a ‘time-out’ to review evidence and standardize design. Int J Pediatr Otorhinolaryngol. 2014;78(12):2048–2055. https://doi.org/10.1016/j.ijporl.2014.10.007.

32. Griffin WL Jr. A retrospective study of traumatic tympanic membrane perforations in a clinical practice. Laryngoscope. 1979;89(2 Pt 1):261–282. https://doi.org/10.1288/00005537-197902000-00009.

33. Amoils CP, Jackler RK, Lustig LR. Repair of chronic tympanic membrane perforations using epidermal growth factor. Otolaryngol Head Neck Surg. 1992;107(5):669–683. https://doi.org/10.1177/019459989210700509.

34. O’Reilly RC, Goldman SA, Widner SA, Cass SP. Creating a stable tympanic membrane perforation using mitomycin C. Otolaryngol Head Neck Surg. 2001;124(1):40–45. https://doi.org/10.1067/mhn.2001.112199.

35. Spandow O, Hellström S, Dahlström M. Structural characterization of persistent tympanic membrane perforations in man. Laryngoscope. 1996;106(3 Pt 1):346–352. https://doi.org/10.1097/00005537-199603000-00020.

36. Kaftan H, Reuther L, Miehe B, Hosemann W, Herzog M. Delay of tympanic membrane wound healing in rats with topical application of a tyrosine kinase inhibitor. Wound Repair Regen. 2008;16(3):364–369. https://doi.org/10.1111/j.1524-475X.2008.00375.x.

37. Kaftan H, Vogelgesang S, Lempas K, Hosemann W, Herzog M. Inhibition of epidermal growth factor receptor by erlotinib: wound healing of experimental tympanic membrane perforations. Otol Neurotol. 2007;28(2):245–249. https://doi.org/10.1097/01.mao.0000244366.24449.db.

38. Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology. 2016;62(2):216–225. https://doi.org/10.1159/000381877.

39. Wong VW, Levi B, Rajadas J, Longaker MT, Gurtner GC. Stem cell niches for skin regeneration. Int J Biomater. 2012;2012:926059. https://doi.org/10.1155/2012/926059.

40. Wong VW, Gurtner GC, Longaker MT. Wound healing: a paradigm for regeneration. Mayo Clin Proc. 2013;88(9):1022–1031. https://doi.org/10.1016/j.mayocp.2013.04.012.

41. Wang WQ, Wang ZM, Tian J. Epidermal stem cells in the tympanic membrane. Zhonghua Er Bi Yan Hou Ke Za Zhi. 2004;39(12):712–716. (In Chinese). Available at: https://pubmed.ncbi.nlm.nih.gov/15813011/.

42. Knutsson J, von Unge M, Rask-Andersen H. Localization of progenitor/stem cells in the human tympanic membrane. Audiol Neurootol. 2011;16(4):263–269. https://doi.org/10.1159/000320612.

43. Seonwoo H, Kim SW, Shin B, Jang KJ, Lee M, Choo OS et al. Latent stem cell-stimulating therapy for regeneration of chronic tympanic membrane perforations using IGFBP2-releasing chitosan patch scaffolds. J Biomater Appl. 2019;34(2):198–207. https://doi.org/10.1177/0885328219845082.

44. Hong P, Bance M, Gratzer PF. Repair of tympanic membrane perforation using novel adjuvant therapies: a contemporary review of experimental and tissue engineering studies. Int J Pediatr Otorhinolaryngol. 2013;77(1):3–12. https://doi.org/10.1016/j.ijporl.2012.09.022.

45. Hussain Z, Pei R. Necessities, opportunities, and challenges for tympanic membrane perforation scaffolding-based bioengineering. Biomed Mater. 2021;16(3):032004. https://doi.org/10.1088/1748-605X/abcf5d.

46. Aleemardani M, Bagher Z, Farhadi M, Chahsetareh H, Najafi R, Eftekhari B, Seifalian A. Can Tissue Engineering Bring Hope to the Development of Human Tympanic Membrane? Tissue Eng Part B Rev. 2021;27(6):572–589. https://doi.org/10.1089/ten.TEB.2020.0176.

47. Rahman A, Olivius P, Dirckx J, Von Unge M, Hultcrantz M. Stem cells and enhanced healing of chronic tympanic membrane perforation. Acta Otolaryngol. 2008;128(4):352–359. https://doi.org/10.1080/00016480701762508.

48. Teh BM, Marano RJ, Shen Y, Friedland PL, Dilley RJ, Atlas MD. Tissue engineering of the tympanic membrane. Tissue Eng Part B Rev. 2013;19(2):116–132. https://doi.org/10.1089/ten.TEB.2012.0389.

49. Goncalves S, Bas E, Langston M, Grobman A, Goldstein BJ, Angeli S. Histologic changes of mesenchymal stem cell repair of tympanic membrane perforation. Acta Otolaryngol. 2017;137(4):411–416. https://doi.org/10.1080/00016489.2016.1261411.

50. Jang CH, Ahn S, Lee JW, Lee BH, Lee H, Kim G. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation. Mater Sci Eng C Mater Biol Appl. 2017;72:456–463. https://doi.org/10.1016/j.msec.2016.11.094.

51. Oswal V, Remacle M, Jovanovic S, Zeitels SM, Krespi JP, Hopper C 9eds.). Principles and Practice of Lasers in Otorhinolaryngology and Head and Neck Surgery. 2nd ed. Kugler Publications; 2014. 947 p. Available at: https://books.google.gm/books?id=icnSAgAAQBAJ&hl=ru&source=gbs_navlinks_s.

52. Sobol EN, Milner TE, Shekhter AB, Baum OI, Guller AE, Ignatieva NY et al. Laser reshaping and regeneration of cartilage. Laser Phys Lett. 2007;4(7):488. https://doi.org/10.1002/lapl.200710019.

53. Sobol E, Shekhter A, Guller A, Baum O, Baskov A. Laser-induced regeneration of cartilage. J Biomed Opt. 2011;16(8):080902. https://doi.org/10.1117/1.3614565.

54. Alexandrovskaya YM, Baum OI, Shekhter AB, Petersen EV, Tiflova OA, Dmitriev AK et al. Mechanisms of laser activation of chondrocytes in osteoarthritis healing. Laser Phys. Lett. 2018;15(8):085601. https://doi.org/10.1088/1612-202X/aac746.

55. Sobol E, Vorobieva N, Baum O, Shekhter A, Guller A. Is it possible to perform laser reshaping without dramatic effect on chondrocytes? Lasers Surg Med. 2011;43(S23):911–912. Available at: https://www.researchgate.net/publication/234166701_Is_it_possible_to_perform_laser_reshaping_without_dramatic_effect_on_chondrocytes.

56. Pereira AN, Eduardo C de P, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med. 2002;31(4):263–267. https://doi.org/10.1002/lsm.10107.

57. Hawkins D, Abrahamse H. Influence of broad-spectrum and infrared light in combination with laser irradiation on the proliferation of wounded skin fibroblasts. Photomed Laser Surg. 2007;25(3):159–169. https://doi.org/10.1089/pho.2007.2010.

58. Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS. In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med. 2008;40(10):726–733. https://doi.org/10.1002/lsm.20709.

59. Luger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S. Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med. 1998;22(2):97–102. https://doi.org/10.1002/(sici)1096-9101(1998)22:23.0.co;2-r.

60. Kawasaki K, Shimizu N. Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med. 2000;26(3):282–291. https://doi.org/10.1002/(sici)1096-9101(2000)26:33.0.co;2-x.

61. Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B. Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci. 2008;23(2):211–215. https://doi.org/10.1007/s10103-007-0477-3.

62. Sobol E, Baum O, Shekhter A, Wachsmann-Hogiu S, Shnirelman A, Alexandrovskaya Y et al. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing. J Biomed Opt. 2017;22(9):91515. https://doi.org/10.1117/1.JBO.22.9.091515.

63. Baum О. I. Temperature control system for laser reshaping of nasal septum. Izvestia Vuzov. Journal of Instrument Engineering. 2015;58(10):847–854 (In Russ.) https://doi.org/10.17586/0021-3454-2015-58-10-847-854.

64. Jones N, Sviridov A, Sobol E, Omelchenko A, Lowe J. Prospective Randomised Study of Laser Reshaping of Cartilage In Vivo. Lasers Med Sci. 2001;16(4):284–290. https://doi.org/10.1007/PL00011365.

65. Holden PK, Li C, Da Costa V, Sun CH, Bryant SV, Gardiner DM, Wong BJ. The effects of laser irradiation of cartilage on chondrocyte gene expression and the collagen matrix. Lasers Surg Med. 2009;41(7):487–491. https://doi.org/10.1002/lsm.20795.

66. Schacht SAL, Stahn P, Hinsberger M, Schick B, Wenzel GI. Laser-induced tissue remodeling within the tympanic membrane. J Biomed Opt. 2018;23(12):121614. https://doi.org/10.1117/1.JBO.23.12.121614.

67. Chen Y, Wang K, Huang J, Li X, Rui Y. An extensive evaluation of laser tissue welding and soldering biotechnologies: Recent advancements, progress, and applications. Curr Res Biotechnol. 2024;8:100234. https://doi.org/10.1016/j.crbiot.2024.100234.

68. Evans DH, Abrahamse H. Efficacy of three different laser wavelengths for in vitro wound healing. Photodermatol Photoimmunol Photomed. 2008;24(4):199–210. https://doi.org/10.1111/j.1600-0781.2008.00362.x.

69. Colver GB, Priestley GC. Failure of a helium-neon laser to affect components of wound healing in vitro. Br J Dermatol. 1989;121(2):179–186. https://doi.org/10.1111/j.1365-2133.1989.tb01797.x.

70. Azevedo LH, de Paula Eduardo F, Moreira MS, de Paula Eduardo C, Marques MM. Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci. 2006;21(2):86–89. https://doi.org/10.1007/s10103-006-0379-9.

71. Maleki Sh, Kamrava SK, Sharifi D, Jalessi M, Asghari A, Ghalehbaghi S, Yazdanifard P. Effect of local irradiation with 630 and 860 nm low-level lasers on tympanic membrane perforation repair in guinea pigs. J Laryngol Otol. 2013;127(3):260–264. https://doi.org/10.1017/S002221511300008X.


Review

For citations:


Baum OI, Zolotova AV, Kasianenko EM, Svistushkin MV, Blinova EV, Svistushkin VM. New possibilities for activating tympanic membrane regeneration. Meditsinskiy sovet = Medical Council. 2025;(18):178-186. (In Russ.) https://doi.org/10.21518/ms2025-450

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)