Features of virulence factors of the Enterobacteriaceae involved in the necrotizing enterocolitis development
https://doi.org/10.21518/ms2025-348
Abstract
Necrotizing enterocolitis is a severe, multifactorial disease manifests by transmural necrosis of the intestinal wall. Recent studies propose new concepts regarding the etiology and pathogenesis of necrotizing enterocolitis. There are numerous risk factors for the development of this condition, including the immaturity of the immune system in premature neonates, impaired colonization of the gut microbiota, underdeveloped intestinal barrier functions, and reduced tolerance to enteral nutrition. Both risk factors and the etiological microbial agent plays an equally important role in the development of this disease. The most commonly isolated bacteria that damage the intestinal wall in children include Escherichia coli, Klebsiella pneumoniae, Cronobacter spp., Staphylococcus aureus, Enterococcus spp., Clostridium perfringens, Pseudomonas aeruginosa, and Proteus mirabilis. In infants under one month of age with immunodeficiency of various etiologies who are receiving antimicrobial therapy, Candida species are identified as causative agents. Viral agents, such as Coronaviruses, Rotaviruses, and Coxsackieviruses, also play a role in the development of necrotizing enterocolitis. However, the disease most commonly results from the damaging action of bacterial agents. Each bacterial strain has its own genetic determinants, which influence the pathogenicity of the agent and the severity and duration of the disease. This review summarizes data from both domestic and international publications on the virulence factors of the Enterobacteriaceae, such as Cronobacter spp., Klebsiella spp., and Enterobacter spp., which are primary causative agents of necrotizing enterocolitis. Enterobacteriaceae bacteria possess a variety of virulence factors, including adhesive activity, invasiveness, survival within macrophages, exotoxin production, and biofilm formation.
About the Authors
D. A. KokorevРоссия
Daniil A. Kokorev, Junior Researcher of the Laboratory of Genetic Technologies in Microbiology, Professional Center for Education and Research in Genetic and Laboratory Technologies, Assistant Professor of the Department of Medical Microbiology and Immunology
89, Chapaevskaya St., Samara, 443099
E. A. Strazhina
Россия
Ekaterina A. Strazhina, Specialist of the Laboratory of Educational Technologies in Genetics, Microbiology and Laboratory Diagnostics, Professional Center for Education and Research in Genetic and Laboratory Technologies
89, Chapaevskaya St., Samara, 443099
N. P. Kabanova
Россия
Natalya P. Kabanova, Cand. Sci. (Med.), Associate Professor, Associate Professor of the Department of Pediatrics, Institute of Professional Education; Deputy Chief Medical Officer
89, Chapaevskaya St., Samara, 443099
1, Shvernik St., Samara, 443029
Z. A. Yankovaya
Россия
Zoya A. Yankovaya, Student of the Institute of Pediatrics
89, Chapaevskaya St., Samara, 443099
D. Yu. Konstantinov
Россия
Dmitrii Yu. Konstantinov, Dr. Sci. (Med.), Associate Professor, Head of the Department of Infectious Diseases and Epidemiology, Director of the Institute of Clinical Medicine
89, Chapaevskaya St., Samara, 443099
А. V. Lyamin
Россия
Artem V. Lyamin, Dr. Sci. (Med.), Associate Professor, Director of the Professional Center for Education and Research in Genetic and Laboratory Technologies, Professor of the Department of Medical Microbiology and Immunology
89, Chapaevskaya St., Samara, 443099
References
1. Xiong T, Maheshwari A, Neu J, Ei-Saie A, Pammi M. An overview of systematic reviews of randomized-controlled trials for preventing necrotizing enterocolitis in preterm infants. Neonatology. 2020;117(1):46–56. https://doi.org/10.1159/000504371.
2. Meister AL, Doheny KK, Travagli RA. Necrotizing enterocolitis: It’s not all in the gut. Exp Biol Med. 2020;245(2):85–95. https://doi.org/10.1177/1535370219891971.
3. Flahive C, Schlegel A, Mezoff EA. Necrotizing Enterocolitis: Updates on Morbidity and Mortality Outcomes. J Pediatr. 2020;220:7–9. https://doi.org/10.1016/j.jpeds.2019.12.035.
4. Abdumanov A. Optimization of the treatment of necrotizing enterocolitis in newborns. Science and Innovation. 2022;1(8):653–657. (In Russ.) https://doi.org/10.5281/zenodo.7433165.
5. Garg PM, Paschal JL, Zhang M, Pippins M, Matthews A, Adams K et al. Brain injury in preterm infants with surgical necrotizing enterocolitis: clinical and bowel pathological correlates. Pediatr Res. 2022;91(5):1182–1195. https://doi.org/10.1038/s41390-021-01614-3.
6. Song X, Shukla S, Kim M. Detection of Cronobacter species in powdered infant formula using immunoliposome-based immunomagnetic concentration and separation assay. Food Microbiol. 2018;72:23–30. https://doi.org/10.1016/j.fm.2017.11.002.
7. Husby A, Wohlfahrt J, Melbye M. Gestational age at birth and cognitive outcomes in adolescence: population based full sibling cohort study. BMJ. 2023;380:e072779. https://doi.org/10.1136/bmj-2022-072779.
8. Lamireau N, Greiner E, Hascoët JM. Risk factors associated with necrotizing enterocolitis in preterm infants: A case-control study. Arch Pediatr. 2023;30(7):477–482. https://doi.org/10.1016/j.arcped.2023.07.003.
9. Ionov OV, Sharafutdinova DR, Balashova EN, Kirtbaya AR, Kosterina ЕЕ, Shakaya MN et al. Necrotizing enterocolitis in extremely low birth weight infants and associated risk factors: a retrospective analysis. Neonatology: News, Opinions, Training. 2023;11(1):28–41. (In Russ.) https://doi.org/10.33029/2308-2402-2023-11-1-28-41.
10. van der Heide M, Mebius MJ, Bos AF, Roofthooft MTR, Berger RMF, Hulscher JBF, Kooi EMW. Hypoxic/ischemic hits predispose to necrotizing enterocolitis in (near) term infants with congenital heart disease: a case control study. BMC Pediatr. 2020;20(1):553. https://doi.org/10.1186/s12887-020-02446-6.
11. Arboleya S, Binetti A, Salazar N, Fernández N, Solís G, HernándezBarranco A et al. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol. 2012;79(3):763–772. https://doi.org/10.1111/j.1574-6941.2011.01261.x.
12. Pammi M, Hollister E, Neu J. Gut Injury and the Microbiome in Neonates. Clin Perinatol. 2020;47(2):369–382. https://doi.org/10.1016/j.clp.2020.02.010.
13. Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V, Simon MC et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host Microbe. 2021;29(5):765–776.e3. https://doi.org/10.1016/j.chom.2021.02.021.
14. Korpela K, Blakstad EW, Moltu SJ, Strømmen K, Nakstad B, Rønnestad AE et al. Intestinal microbiota development and gestational age in preterm neonates. Sci Rep. 2018;8(1):2453. https://doi.org/10.1038/s41598-018-20827-x.
15. Fu X, Li S, Jiang Y, Hu X, Wu H. Necrotizing Enterocolitis and Intestinal Microbiota: The Timing of Disease and Combined Effects of Multiple Species. Front Pediatr. 2021;9:657349. https://doi.org/10.3389/fped.2021.657349.
16. Warner BB, Deych E, Zhou Y, Hall-Moore C, Weinstock GM, Sodergren E et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study. Lancet. 2016;387(10031):1928–1936. https://doi.org/10.1016/S0140-6736(16)00081-7.
17. Zhao S, Jiang H, Miao Y, Liu W, Li Y, Liu H et al. Factors influencing necrotizing enterocolitis in premature infants in China: a systematic review and meta-analysis. BMC Pediatr. 2024;24(1):148. https://doi.org/10.1186/s12887-024-04607-3.
18. Corebima BIRV, Handono K, Barlianto W, Santosaningsih D, Rohsiswatmo R, Sulistijono E et al. Risk factors of necrotising enterocolitis among 28-34 weeks preterm neonates at a Tertiary Care Hospital, East Java, Indonesia. Med J Malaysia. 2023;78(4):458–465. Available at: https://pubmed.ncbi.nlm.nih.gov/37518912/.
19. Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawöger R, KiechlKohlendorfer U et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156(4):562–567.e1. https://doi.org/10.1016/j.jpeds.2009.10.040.
20. Karpova IYu, Parshikov VV, Novopoltseva EG, Pyatova ED, Molchanova DV. Stratification of risk factors for the development of necrotizing enterocolitis in newborns. Russian Journal of Pediatric Surgery. 2019;23(2):64–67. (In Russ.) https://doi.org/10.18821/1560-9510-2019-23-2-64-67.
21. Alganabi M, Lee C, Bindi E, Li B, Pierro A. Recent advances in understanding necrotizing enterocolitis. F1000Research. 2019;8(F1000 Faculty Rev):107. https://doi.org/10.12688/f1000research.17228.1.
22. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018;562(7728):583–588. https://doi.org/10.1038/s41586-018-0617-x.
23. De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195(1):74–85. https://doi.org/10.1111/cei.13158.
24. Priputnevich TV, Isaeva EL, Muravieva VV, Mesyan MK, Zubkov VV, Nikolaeva AV et al. Development of the gut microbiota of term and late preterm newborn infants. Neonatology: News, Opinions, Training. 2023;11(1):42–56. (In Russ.) https://doi.org/10.33029/2308-2402-2023-11-1-42-56.
25. He Y, Du W, Xiao S, Zeng B, She X, Liu D et al. Colonization of fecal microbiota from patients with neonatal necrotizing enterocolitis exacerbates intestinal injury in germfree mice subjected to necrotizing enterocolitisinduction protocol via alterations in butyrate and regulatory T cells. J Transl Med. 2021;19(1):510. https://doi.org/10.1186/s12967-021-03109-5.
26. Kim CS, Claud EC. Necrotizing Enterocolitis Pathophysiology: How Microbiome Data Alter Our Understanding. Clin Perinatol. 2019;46(1):29–38. https://doi.org/10.1016/j.clp.2018.10.003.
27. Huang H, Peng Q, Zhang Y, Li Y, Huang N, Duan M, Huang B. Abnormalities in microbial composition and function in infants with necrotizing enterocolitis: A single-center observational study. Front Pediatr. 2022;10:963345. https://doi.org/10.3389/fped.2022.963345.
28. Olm MR, Bhattacharya N, Crits-Christoph A, Firek BA, Baker R, Song YS et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci Adv. 2019;5(12):eaax5727. https://doi.org/10.1126/sciadv.aax5727.
29. Duan M, Han Z, Huang N. Changes of intestinal microflora in neonatal necrotizing enterocolitis: a single-center study. J Int Med Res. 2020;48(9):300060520957804. https://doi.org/10.1177/0300060520957804.
30. Kovler ML, Gonzalez Salazar AJ, Fulton WB, Lu P, Yamaguchi Y, Zhou Q et al. Toll-like receptor 4-mediated enteric glia loss is critical for the development of necrotizing enterocolitis. Sci Transl Med. 2021;13(612):eabg3459. https://doi.org/10.1126/scitranslmed.abg3459.
31. Hackam DJ, Sodhi CP. Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Necrotizing Enterocolitis. Cell Mol Gastroenterol Hepatol. 2018;6(2):229–238.e1. https://doi.org/10.1016/j.jcmgh.2018.04.001.
32. Liu T, Zong H, Chen X, Li S, Liu Z, Cui X et al. Toll-like receptor 4-mediated necroptosis in the development of necrotizing enterocolitis. Pediatr Res. 2022;91(1):73–82. https://doi.org/10.1038/s41390-021-01457-y.
33. Ling N, Li C, Zhang J, Wu Q, Zeng H, He W et al. Prevalence and Molecular and Antimicrobial Characteristics of Cronobacter spp. Isolated From Raw Vegetables in China. Front Microbiol. 2018;9:1149. https://doi.org/10.3389/fmicb.2018.01149.
34. Song X, Teng H, Chen L, Kim M. Cronobacter Species in Powdered Infant Formula and Their Detection Methods. Korean J Food Sci Anim Resour. 2018;38(2):376–390. https://doi.org/10.5851/kosfa.2018.38.2.376.
35. Gan X, Li M, Xu J, Yan S, Wang W, Li F. Emerging of Multidrug-Resistant Cronobacter sakazakii Isolated from Infant Supplementary Food in China. Microbiol Spectr. 2022;10(5):e0119722. https://doi.org/10.1128/spectrum.01197-22.
36. Jia X, Hua J, Liu L, Xu Z, Li Y. Phenotypic characterization of pathogenic Cronobacter spp. strains. Microb Pathog. 2018;121:232–237. https://doi.org/10.1016/j.micpath.2018.05.033.
37. Cui J, Hu J, Du X, Yan C, Xue G, Li S et al. Genomic Analysis of Putative Virulence Factors Affecting Cytotoxicity of Cronobacter. Front Microbiol. 2020;10:3104. https://doi.org/10.3389/fmicb.2019.03104.
38. Liu Y, Zhang J, Zhao H, Zhong F, Li J, Zhao L. VBNC Cronobacter sakazakii survives in macrophages by resisting oxidative stress and evading recognition by macrophages. BMC Microbiol. 2024;24(1):458. https://doi.org/10.1186/s12866-024-03595-9.
39. Zhu D, Fan Y, Wang X, Li P, Huang Y, Jiao J et al. Characterization of Molecular Chaperone GroEL as a Potential Virulence Factor in Cronobacter sakazakii. Foods. 2023;12(18):3404. https://doi.org/10.3390/foods12183404.
40. Fan Y, Li P, Zhu D, Zhao C, Jiao J, Ji X, Du X. Effects of ESA_00986 Gene on Adhesion/Invasion and Virulence of Cronobacter sakazakii and Its Molecular Mechanism. Foods. 2023;12(13):2572. https://doi.org/10.3390/foods12132572.
41. Chen Z, Zhang Y, Lin R, Meng X, Zhao W, Shen W, Fan H. Cronobacter sakazakii induces necrotizing enterocolitis by regulating NLRP3 inflammasome expression via TLR4. J Med Microbiol. 2020;69(5):748–758. https://doi.org/10.1099/jmm.0.001181.
42. Li P, Dong X, Wang XY, Du T, Du XJ, Wang S. Comparative Proteomic Analysis of Adhesion/Invasion Related Proteins in Cronobacter sakazakii Based on Data-Independent Acquisition Coupled With LC-MS/MS. Front Microbiol. 2020;11:1239. https://doi.org/10.3389/fmicb.2020.01239.
43. Joseph S, Hariri S, Masood N, Forsythe S. Sialic acid utilization by Cronobacter sakazakii. Microb Inform Exp. 2013;3(1):3. https://doi.org/10.1186/2042-5783-3-3.
44. Chen X, Xue J, Dong X, Lu P. Uncovering virulence factors in Cronobacter sakazakii: insights from genetic screening and proteomic profiling. Appl Environ Microbiol. 2023;89(10):e0102823. https://doi.org/10.1128/aem.01028-23.
45. Holý O, Cruz-Córdova A, Xicohtencatl-Cortes J, Hochel I, Parra-Flores J, Petrželová J et al. Occurrence of virulence factors in Cronobacter sakazakii and Cronobacter malonaticus originated from clinical samples. Microb Pathog. 2019;127:250-256. https://doi.org/10.1016/j.micpath.2018.12.011.
46. Eshwar AK, Wolfrum N, Stephan R, Fanning S, Lehner A. Interaction of matrix metalloproteinase-9 and Zpx in Cronobacter turicensis LMG 23827T mediated infections in the zebrafish model. Cell Microbiol. 2018;20(11):e12888. https://doi.org/10.1111/cmi.12888.
47. Qian C, Huang M, Du Y, Song J, Mu H, Wei Y et al. Chemotaxis and Shorter O-Antigen Chain Length Contribute to the Strong Desiccation Tolerance of a Food-Isolated Cronobacter sakazakii Strain. Front Microbiol. 2022;12:779538. https://doi.org/10.3389/fmicb.2021.779538.
48. Wang Y, Ling N, Wang Y, Ou D, Liang Z, Li G et al. Effect of ferric ions on Cronobacter sakazakii growth, biofilm formation, and swarming motility. Int J Food Microbiol. 2024;408:110418. https://doi.org/10.1016/j.ijfoodmicro.2023.110418.
49. Ye Y, Ling N, Gao J, Zhang M, Zhang X, Tong L et al. Short communication: Roles of outer membrane protein W (OmpW) on survival and biofilm formation of Cronobacter sakazakii under neomycin sulfate stress. J Dairy Sci. 2018;101(4):2927–2931. https://doi.org/10.3168/jds.2017-13517.
50. Kim S, Yoon H, Ryu S. New virulence factor CSK29544_02616 as LpxA binding partner in Cronobacter sakazakii. Sci Rep. 2018;8(1):835. https://doi.org/10.1038/s41598-018-19306-0.
51. Ling N, Zhang J, Li C, Zeng H, He W, Ye Y, Wu Q. The Glutaredoxin Gene, grxB, Affects Acid Tolerance, Surface Hydrophobicity, Auto-Aggregation, and Biofilm Formation in Cronobacter sakazakii. Front Microbiol. 2018;9:133. https://doi.org/10.3389/fmicb.2018.00133.
52. Ling N, Wang X, Liu D, Shen Y, Zhang D, Ou D et al. Role of fliC on biofilm formation, adhesion, and cell motility in Cronobacter malonaticus and regulation of luxS. Food Chem Toxicol. 2021;149:111940. https://doi.org/10.1016/j.fct.2020.111940.
53. Choi U, Lee CR. Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Front Microbiol. 2019;10:953. https://doi.org/10.3389/fmicb.2019.00953.
54. Kothary MH, Gopinath GR, Gangiredla J, Rallabhandi PV, Harrison LM, Yan QQ et al. Analysis and Characterization of Proteins Associated with Outer Membrane Vesicles Secreted by Cronobacter spp. Front Microbiol. 2017;8:134. https://doi.org/10.3389/fmicb.2017.00134.
55. Ling N, Zhang X, Forsythe S, Zhang D, Shen Y, Zhang J et al. Bacteroides fragilis ameliorates Cronobacter malonaticus lipopolysaccharide-induced pathological injury through modulation of the intestinal microbiota. Front Immunol. 2022;13:931871. https://doi.org/10.3389/fimmu.2022.931871.
56. Zhou A, Wang L, Zhang J, Yang X, Ou Z, Zhao L. Survival of viable but nonculturable Cronobacter sakazakii in macrophages contributes to infections. Microb Pathog. 2021;158:105064. https://doi.org/ 10.1016/j.micpath.2021.105064.
57. Cavinato L, Genise E, Luly FR, Di Domenico EG, Del Porto P, Ascenzioni F. Escaping the Phagocytic Oxidative Burst: The Role of SODB in the Survival of Pseudomonas aeruginosa Within Macrophages. Front Microbiol. 2020;11:326. https://doi.org/10.3389/fmicb.2020.00326.
58. Jin T, Pang L, Yue T, Niu L, Li T, Liang Y et al. The role of DsbA and PepP genes in the environmental tolerance and virulence factors of Cronobacter sakazakii. Food Res Int. 2024;190:114555. https://doi.org/10.1016/j.foodres.2024.114555.
59. Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJ, McClelland M et al. Identification and Characterization of Cronobacter Iron Acquisition Systems. Appl Environ Microbiol. 2012;78(17):6035–6050. https://doi.org/10.1128/AEM.01457-12.
60. Parra-Flores J, Holý O, Riffo F, Lepuschitz S, Maury-Sintjago E, RodríguezFernández A et al. Profiling the Virulence and Antibiotic Resistance Genes of Cronobacter sakazakii Strains Isolated From Powdered and Dairy Formulas by Whole-Genome Sequencing. Front Microbiol. 2021;12:694922. https://doi.org/10.3389/fmicb.2021.694922.
61. Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021;52(4):1701–1718. https://doi.org/10.1007/s42770-021-00624-x.
62. Phair K, Pereira SG, Kealey C, Fanning S, Brady DB. Insights into the mechanisms of Cronobacter sakazakii virulence. Microb Pathog. 2022;169:105643. https://doi.org/10.1016/j.micpath.2022.105643.
63. Haston JC, Miko S, Cope JR, McKeel H, Walters C, Joseph LA et al. Cronobacter sakazakii Infections in Two Infants Linked to Powdered Infant Formula and Breast Pump Equipment – United States, 2021 and 2022. MMWR Morb Mortal Wkly Rep. 2023;72(9):223–226. https://doi.org/10.15585/mmwr.mm7209a2.
64. Hu L. Prevalence of curli genes among Cronobacter species and their roles in biofilm formation and cell-cell aggregation. Int J Food Microbiol. 2018;265:65–73. https://doi.org/10.1016/j.ijfoodmicro.2017.10.031.
65. Vega-Hernández R, Ochoa SA, Valle-Rios R, Jaimes-Ortega GA, ArellanoGalindo J, Aparicio-Ozores G et al. Flagella, Type I Fimbriae and Curli of Uropathogenic Escherichia coli Promote the Release of Proinflammatory Cytokines in a Coculture System. Microorganisms. 2021;9(11):2233. https://doi.org/10.3390/microorganisms9112233.
66. Olm MR, Bhattacharya N, Crits-Christoph A, Firek BA, Baker R, Song YS et al. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci Adv. 2019;5(12):eaax5727. https://doi.org/10.1126/sciadv.aax5727.
67. Coleman S, Unterhauser K, Rezaul K, Ledala N, Lesmes S, Caimano MJ et al. High-resolution microbiome analysis reveals exclusionary Klebsiella species competition in preterm infants at risk for necrotizing enterocolitis. Sci Rep. 2023;13(1):7893. https://doi.org/10.1038/s41598-023-34735-2.
68. Rahal A, Andreo A, Le Gallou F, Bourigault C, Bouchand C, Ferriot C et al. Enterobacter cloacae complex outbreak in a neonatal intensive care unit: multifaceted investigations and preventive measures are needed. J Hosp Infect. 2021;116:87–90. https://doi.org/10.1016/j.jhin.2021.07.012.
69. Eichel V, Papan C, Boutin S, Pöschl J, Heeg K, Nurjadi D. Alteration of antibiotic regimen as an additional control measure in suspected multi-drugresistant Enterobacter cloacae outbreak in a neonatal intensive care unit. J Hosp Infect. 2020;104(2):144–149. https://doi.org/10.1016/j.jhin.2019.09.007.
70. Masi AC, Embleton ND, Lamb CA, Young G, Granger CL, Najera J et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut. 2021;70(12):2273–2282. https://doi.org/10.1136/gutjnl-2020-322771.
71. Ghasemian A, Mobarez AM, Peerayeh SN, Bezmin Abadi AT. The association of surface adhesin genes and the biofilm formation among Klebsiella oxytoca clinical isolates. New Microbes New Infect. 2018;27:36–39. https://doi.org/10.1016/j.nmni.2018.07.001.
72. Remya PA, Shanthi M, Sekar U. Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J Med Microbiol. 2019;37(2):210–218. https://doi.org/10.4103/ijmm.IJMM_19_157.
73. Grigorova EV, Rychkova LV, Ivanova EI, Nemchenko UM, Savelkaeva MV. Detection of genetic determinants of pathogenicity of strains of Klebsiella spp. isolated from the intestinal biotope of children with functional gastrointestinal disorders. Acta Biomedica Scientifica. 2018;3(5):60–65. (In Russ.) https://doi.org/10.29413/ABS.2018-3.5.9.
74. Aziz SN, Al-Kadmy IMS, Rheima AM, Al-Sallami KJ, Abd Ellah NH, El-Saber Batiha G et al. Binary CuO\CoO nanoparticles inhibit biofilm formation and reduce the expression of papC and fimH genes in multidrug-resistant Klebsiella oxytoca. Mol Biol Rep. 2023;50(7):5969–5976. https://doi.org/10.1007/s11033-023-08447-9.
75. Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA et al. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem. 2022;298(3):101651. https://doi.org/10.1016/j.jbc.2022.101651.
76. Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/ survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect Immun. 2015;83(8):3325–3333. https://doi.org/10.1128/IAI.00430-15.
77. Kumar A, Chakravorty S, Yang T, Russo TA, Newton SM, Klebba PE. Siderophore-mediated iron acquisition by Klebsiella pneumoniae. J Bacteriol. 2024;206(5):e0002424. https://doi.org/10.1128/jb.00024-24.
78. Russo TA, Olson R, Macdonald U, Metzger D, Maltese LM, Drake EJ, Gulick AM. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect Immun. 2014;82(6):2356–2367. https://doi.org/10.1128/IAI.01667-13.
79. Palacios M, Broberg CA, Walker KA, Miller VL. A Serendipitous Mutation Reveals the Severe Virulence Defect of a Klebsiella pneumoniae fepB Mutant. mSphere. 2017;2(4):e00341-17. https://doi.org/10.1128/mSphere.00341-17.
80. Soujanya BR, Banashankari GS. Phenotypic Detection of Virulence Factors of Uropathogenic Enterobacteriaceae. J Pure Appl Microbiol. 2023;17(2):931–941. https://doi.org/10.22207/JPAM.17.2.22.
81. Akhtarieva AA, Dolgushin II, Gabidullin ZG, Gabidullin IuZ, Kamalova AA, Akhmadeev RM. Effect of Enterobacter cloacae thermolabile enterotoxin on immune system of mice. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2009;86(6):98–104. (In Russ.) Available at: https://microbiol.crie.ru/jour/article/view/13382.
82. Yang J, Long H, Hu Y, Feng Y, McNally A, Zong Z. Klebsiella oxytoca Complex: Update on Taxonomy, Antimicrobial Resistance, and Virulence. Clin Microbiol Rev. 2022;35(1):e00006-21. https://doi.org/10.1128/CMR.00006-21.
83. Russo TA, Olson R, Fang CT, Stoesser N, Miller M, MacDonald U et al. Identification of Biomarkers for Differentiation of Hypervirulent Klebsiella pneumoniae from Classical K. pneumoniae. J Clin Microbiol. 2018;56(9):e00776-18. https://doi.org/10.1128/JCM.00776-18.
84. Pandey R, Mishra SK, Shrestha A. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect Drug Resist. 2021;14:2201–2212. https://doi.org/10.2147/IDR.S306688.
85. Merhi G, Amayri S, Bitar I, Araj GF, Tokajian S. Whole Genome-Based Characterization of Multidrug Resistant Enterobacter and Klebsiella aerogenes Isolates from Lebanon. Microbiol Spectr. 2023;11(1):e0291722. https://doi.org/10.1128/spectrum.02917-22.
86. Tang L, Wang H, Cao K, Li Y, Li T, Huang Y, Xu Y. Epidemiological Features and Impact of High Glucose Level on Virulence Gene Expression and Serum Resistance of Klebsiella pneumoniae Causing Liver Abscess in Diabetic Patients. Infect Drug Resist. 2023;16:1221–1230. https://doi.org/10.2147/IDR.S391349.
87. Soria-Bustos J, Ares MA, Gómez-Aldapa CA, González-Y-Merchand JA, Girón JA, De la Cruz MA. Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization. Front Microbiol. 2020;11:560488. https://doi.org/10.3389/fmicb.2020.560488.
88. Schroll C, Barken KB, Krogfelt KA, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010;10:179. https://doi.org/10.1186/1471-2180-10-179.
89. Mavroidi A, Gartzonika K, Spanakis N, Froukala E, Kittas C, Vrioni G, Tsakris A. Comprehensive Analysis of Virulence Determinants and Genomic Islands of blaNDM-1 -Producing Enterobacter hormaechei Clinical Isolates from Greece. Antibiotics. 2023;12(10):1549. https://doi.org/10.3390/antibiotics12101549.
90. De Maayer P, Pillay T, Coutinho TA. Flagella by numbers: comparative genomic analysis of the supernumerary flagellar systems among the Enterobacterales. BMC Genomics. 2020;21(1):670. https://doi.org/10.1186/s12864-020-07085-w.
91. Mishra M, Panda S, Barik S, Sarkar A, Singh DV, Mohapatra H. Antibiotic Resistance Profile, Outer Membrane Proteins, Virulence Factors and Genome Sequence Analysis Reveal Clinical Isolates of Enterobacter Are Potential Pathogens Compared to Environmental Isolates. Front Cell Infect Microbiol. 2020;10:54. https://doi.org/10.3389/fcimb.2020.00054.
92. Buffet A, Rocha EPC, Rendueles O. Nutrient conditions are primary drivers of bacterial capsule maintenance in Klebsiella. Proc Biol Sci. 2021;288(1946):20202876. https://doi.org/10.1098/rspb.2020.2876.
93. Regueiro V, Campos MA, Pons J, Albertí S, Bengoechea JA. The uptake of a Klebsiella pneumoniae capsule polysaccharide mutant triggers an inflammatory response by human airway epithelial cells. Microbiology. 2006;152(Pt 2):555–566. https://doi.org/10.1099/mic.0.28285-0.
94. Novikova IE, Sadeeva ZZ, Alyabieva NM, Samoylova EA, Karaseva OV, Yanyushkina OG, Lazareva AV. Antimicrobial resistance and virulence of carbapenem-resistant Klebsiella pneumoniae strains isolated from children in intensive care and surgical units. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2023;100(4):321–332. (In Russ.) https://doi.org/10.36233/0372-9311-373.
95. Ghasemian A, Mohabati Mobarez A, Najar Peerayeh S, Talebi Bezmin Abadi A, Khodaparast S, Mahmood SS. Expression of adhesin genes and biofilm formation among Klebsiella oxytoca clinical isolates from patients with antibiotic-associated haemorrhagic colitis. J Med Microbiol. 2019;68(7):978–985. https://doi.org/10.1099/jmm.0.000965.
96. Shipitsyna IV, Osipova EV, Rozova LV. Adhesive potential of clinical strains of Enterobacter сloacae isolated from the wounds of patients with chronic osteomyelitis and their sensitivity to antimicrobial preparations. Novosti Khirurgii. 2017;25(3):273–278. (In Russ.) Available at: https://elibrary.ru/ynwxhz.
97. Kraeva LA, Kunilova ES, Burgasova OA, Hamdulaeva GN, Danilova EM, Bespalova GI. The importance of pathogenicity factors of some Streptococcus spp. and Klebsiella spp. in determining their etiological role in the inflammatory processes of the respiratory tract. Russian Journal of Infection and Immunity. 2020;10(1):121–128. (In Russ.) https://doi.org/10.15789/2220-7619-TIO-1339.
98. Holden VI, Breen P, Houle S, Dozois CM, Bachman MA. Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia. mBio. 2016;7(5):e01397-16. https://doi.org/10.1128/mBio.01397-16.
99. Unterhauser K, Pöltl L, Schneditz G, Kienesberger S, Glabonjat RA, Kitsera M et al. Klebsiella oxytoca enterotoxins tilimycin and tilivalline have distinct host DNA-damaging and microtubule-stabilizing activities. Proc Natl Acad Sci U S A. 2019;116(9):3774–3783. https://doi.org/10.1073/pnas.1819154116.
100. Paveglio S, Ledala N, Rezaul K, Lin Q, Zhou Y, Provatas AA et al. Cytotoxinproducing Klebsiella oxytoca in the preterm gut and its association with necrotizing enterocolitis. Emerg Microbes Infect. 2020;9(1):1321–1329. https://doi.org/10.1080/22221751.2020.1773743.
101. Ledala N, Malik M, Rezaul K, Paveglio S, Provatas A, Kiel A et al. Bacterial Indole as a Multifunctional Regulator of Klebsiella oxytoca Complex Enterotoxicity. mBio. 2022;13(1):e0375221. https://doi.org/10.1128/mbio.03752-21.
102. Zakharova YuV, Levanova LA, Ivanov VI, Bykov AC, Afanasiev SS, Afanasiev MS, Karaulov AV. Enterobacteria in the intestinal microbiocenosis of HIV-infected children. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii. 2019;96(5):40–46. (In Russ.) https://doi.org/10.36233/0372-9311-2019-5-40-46
Review
For citations:
Kokorev DA, Strazhina EA, Kabanova NP, Yankovaya ZA, Konstantinov DY, Lyamin АV. Features of virulence factors of the Enterobacteriaceae involved in the necrotizing enterocolitis development. Meditsinskiy sovet = Medical Council. 2025;(19):154–165. (In Russ.) https://doi.org/10.21518/ms2025-348
JATS XML


































