Preview

Meditsinskiy sovet = Medical Council

Advanced search

Prediction of bronchopulmonary dysplasia, retinopathy of prematurity, and periventricular leukomalacia in extremely preterm newborns

https://doi.org/10.21518/ms2025-505

Abstract

Introduction. Specific perinatal pathologies in extremely preterm infants include bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia, which can subsequently lead to disability. It is necessary to identify new prognostic markers for the development of these pathologies for a personalized approach to the management of such patients. Aim. To analyze early perinatal outcomes in extremely preterm infants with perinatal lesions of the central nervous system and to establish new predictors of their development.

Materials and methods. An analysis of the frequency of formation of specific perinatal pathology (bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), periventricular leukomalacia (PVL)) was conducted in 66 extremely preterm newborns at the time of discharge from the hospital; Their condition was assessed at birth and during the neonatal period, including an assessment of physical development. Neuromodulin (growth-associated protein 43 (GAP-43)) was measured in the serum on the first day of life.

Results and discussion. Most infants (98.5%) were born in a state of asphyxia and required resuscitation. In the neonatal period, cerebral ischemia and congenital pneumonia were diagnosed in 100% of children. Intraventricular hemorrhage occurred in 27.3% of those examined, anemia in 60.6%, and neonatal jaundice in 48.5% of infants. Infants with BPD and ROP had lower growth rates, more often required invasive mechanical ventilation or longer-term CPAP with elevated oxygen concentrations, and also had longer stays in the intensive care unit. The level of growth protein GAP-43 in the groups of children with BPD and ROP was statistically significantly lower than in children without these outcomes (p = 0.035).

Conclusion. The frequency of specific perinatal pathology in extremely preterm infants by the end of the neonatal period was established: BPD – 15.2%, ROP – 21.2%, PVL – 6.1%. The concentration of GAP-43 was determined for early prediction of the development of these pathologies.

About the Authors

N. V. Kharlamova
Ivanovo Research Institute of Motherhood and Childhood named after V.N. Gorodkov
Russian Federation

Natalia V. Kharlamova, Dr. Sci. (Med.), Head of the Department of Neonatology and Clinical Neurology of Childhood, Professor of the Department of Obstetrics and Gynecology, Neonatology, Anesthesiology and Resuscitation

20, Pobedy St., Ivanovo, 153045



M. A. Ananyeva
Ivanovo Research Institute of Motherhood and Childhood named after V.N. Gorodkov
Russian Federation

Maria A. Ananyeva, Cand. Sci. (Med.), Researcher, Department of Neonatology and Clinical Neurology of Childhood

20, Pobedy St., Ivanovo, 153045



Yu. A. Ivanenkova
Ivanovo Research Institute of Motherhood and Childhood named after V.N. Gorodkov
Russian Federation

Yulia A. Ivanenkova, Cand. Sci. (Med.), Researcher, Department of Neonatology and Clinical Neurology of Childhood

20, Pobedy St., Ivanovo, 153045



D. A. Kulikov
Ivanovo Research Institute of Motherhood and Childhood named after V.N. Gorodkov
Russian Federation

Dmitry A. Kulikov, Postgraduate Student of the Department of Neonatology and Clinical Neurology of Childhood

20, Pobedy St., Ivanovo, 153045



References

1. Vinogradova IV. Morbidity and mortality of children born with an extremely low weight. Vestnik Chuvashskogo Universiteta. 2012;(3):335–341. (In Russ.) Available at: https://www.elibrary.ru/pieopd.

2. Voroshilina KI, RovdaYuI. Quality of life in premature babies with low, very low and extremely lowbirth weight, according to catamnesising observation in perinatal center. Modern Problems of Science and Education. 2015;(6):91. (In Russ.) Available at: https://science-education.ru/ru/article/view?id=23148.

3. Kovalenko TV, Zernova LYu, Babinceva NV. Results of nursing infants with extremely low body weight. Practical Medicine. 2013;75(6):84–89. (In Russ.) Available at: https://pmarchive.ru/rezultaty-vyxazhivaniya-detej-s-ekstremalno-nizkoj-massoj-tela/.

4. Matveeva EA, Malyshkina AI, Fil’kina OM, Kharlamova NV. Medical status of children born from extremely preterm delivery with fetal growth retardation syndrome. Russian Pediatric Journal. 2022;3(1):194. (In Russ.) Available at: https://www.rospedj.ru/jour/article/view/352/282.

5. Shilova NA, Kharlamova NV, Fisyuk YuA, Chasha TV, Churakova EV, Mezhinsky SS. Frequency and outcome of retinopathy in profoundly pre-term newborns receiving specialized medical care. Russian Bulletin of Perinatology and Pediatrics. 2018;63(5):51–54. (In Russ.) https://doi.org/10.21508/1027-4065-2018-63-5-51-54.

6. Valiulina AYа, Akhmadeyeva EN, Kryvkina NN. The problems and perspectives of successful resuscitation and rehabilitation children born with low and extremely low birth weight. Bulletin of Contemporary Clinical Medicine. 2013;6(1):34–41. (In Russ.) https://doi.org/10.20969/VSKM.2013.6(1).1-105.

7. Володин ПЛ, Катаргина ЛА, Коголева ЛВ, Сайдашева ЭИ, Степанова ЕА, Фомина НВ. Ретинопатия недоношенных, активная фаза: клинические рекомендации. 2017. 28 с. Режим доступа: https://oor.ru/medic/recommendations.

8. Song J, Yue Y, Sun H, Cheng P, Xu F, Li B et al. Clinical characteristics and long-term neurodevelopmental outcomes of leukomalacia in preterm infants and term infants: a cohort study. J Neurodev Disord. 2023;15(1):24. https://doi.org/10.1186/s11689-023-09489-7.

9. Trepilets SV, Golosnaya GS, Trepilets SV, Kukushkin EI. Hypoxic hemorrhagic brain lesions in neonates: the significance of determination of neurochemical markers, inflammation markers and apoptosis in the neonatal period and catamnesis follow-up results. Pediatriya – Zhurnal im G.N. Speranskogo. 2018;97(1):31–37. (In Russ.) Available at: https://pediatriajournal.ru/archive?show=362&section=5131.

10. Cai J, Tuong CM, Zhang Y, Shields CB, Guo G, Fu H, Gozal D. Mouse intermittent hypoxia mimicking apnoea of prematurity: effects on myelinogenesis and axonal maturation. J Pathol. 2012;226(3):495–508. https://doi.org/10.1002/path.2980.

11. Hоlаhаn MR. GАP-43 in synаptiс plаstiсity: mоlесulаr pеrspесtivеs. Rеs Rеpоrt Biосhеm. 2015;5:137–146. https://doi.org/10.2147/RRBC.S73846.

12. Hоlаhаn MR. А Shiftfrоm а Pivоtаltо Suppоrting Rоlе fоr thе Grоwth Аssосiаtеd Prоtеin (GАP-43) in thе Сооrdinаtiоn оf Аxоnаl Struсturаl аnd Funсtiоnаl Plаstiсity. Frоnt Сеll Nеurоsсi. 2017;11:266. https://doi.org/10.3389/fncel.2017.00266.

13. Pаrk SJ, Jung NJ, Nа SS. Thе еffесts оf еxеrсisе оnthе GАP-43 еxprеssiоninthе spinаl соrd оf аrthritis-induсеdrаts. J Phys Thеr Sсi. 2016;28(10):2921–2923. https://doi.org/10.1589/jpts.28.2921.

14. Zhao S, Zhao M, Xiao T, Jolkkonen J, Zhao C. Constraint-induced movement therapy overcomes the intrinsic axonal growth-inhibitory signals in stroke rats. Stroke. 2013;44(6):1698 –1705. https://doi.org/10.1161/STROKEAHA.111.000361.

15. Andreev AV, Kharlamova NV, Kuzmenko GN, Pesenkina AA. Serum neuromodulin content in preterm infants with perinatal lesions of the central nervous system in the first day of life. Russian Bulletin of Perinatology and Pediatrics. 2022;67(2):76–82. (In Russ.) https://doi.org/10.21508/1027-4065-2022-67-2-76-82.

16. Baranov AA, Namazova-Baranova LS, Volodin NN, Davydova IV, Ovsyannikov DYu, Ivanov DO et al. Managing Children with Bronchopulmonary Dysplasia. Pediatric pharmacology. 2016;13(4):319–333. (In Russ.) https://doi.org/10.15690/pf.v13i4.1603.

17. Pavlinova ЕB, Sakhipova GA. Bronchopulmonary Dysplasia in Preterm Babies, an Urgent Issue. Doctor.Ru. 2017;133(4):34–38. (In Russ.) Available at: https://journaldoctor.ru/catalog/pediatriya/bronkholegochnaya.

18. Shim VR, Zhubanysheva KB, Bajgazieva GZh, Rahymbekova MZh, Mutalhan BA, Dzhumabekova AB, Onalbaeva BZh. Modern view on the problem of bronchopulmonary dysplasia of premature newborns (literature review). Vestnik KazNMU. 2020;(4):186–192. (In Russ.) https://vestnik.kaznmu.edu.kz/10.53065/kaznmu.2020.55.4.pdf.

19. Mezhinsky SS, Shilova NA, Kharlamova NV, Chasha TV, Andreev AV. The role of aggressive factors of respiratory support in the formation of bronchopulmonary dysplasia in preterm infants. Neonatology: News, Opinions, Training. 2019;23(1):12–20. (In Russ.) https://doi.org/10.24411/2308-2402-2019-11002.

20. Kharlamova NV, Shilova NA, Ananyeva MA, Matveeva EA. Health state at the age of 12 months in preterm children who have suffered intraventricular hemorrhages I and II degree during early neonatal period. Risk factors for the formation of cerebral palsy. Pediatrician (St. Petersburg). 2024;15(2):43–52. (In Russ.) https://doi.org/10.17816/PED15243-52.

21. Kirilochev OK, Tarasova ZG, Eiberman AS, Bochkova LG. Clinical significance of periventricular leukomalacia in the formation cerebral palsy. Lechaschi Vrach. 2023;26(11):76–83. (In Russ.) Available at: https://www.lvrach.ru/2023/11/15438899.

22. Yusupova EF, Gainetdinova DD. Periventricular leucomalacia: etiology, pathogenesis, clinical signs, outcomes comments. Current Pediatrics. 2010;9(4):68–72. (In Russ.) Available at: https://vsp.spr-journal.ru/jour/article/view/922.

23. Volpe JJ. Neurology of the newborn. Philadelphia: Sounders; 2008; 860 p.

24. Romero-Guzman GJ, Lopez-Munoz F. Prevalence and risk factors for periventricular leukomalacia in preterm infants. A systematic review. Rev Neurol. 2017;65(2):57–62. https://doi.org/10.33588/rn.6502.2017002.


Review

For citations:


Kharlamova NV, Ananyeva MA, Ivanenkova YA, Kulikov DA. Prediction of bronchopulmonary dysplasia, retinopathy of prematurity, and periventricular leukomalacia in extremely preterm newborns. Meditsinskiy sovet = Medical Council. (In Russ.) https://doi.org/10.21518/ms2025-505

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)