Transcranial direct current stimulation in early-onset Parkinson’s disease
https://doi.org/10.21518/ms2025-534
Abstract
Introduction. Transcranial direct current stimulation (tDCS) is a novel adjunctive method for treating Parkinson’s disease (PD) symptoms. However, its efficacy and safety in patients with early-onset PD remain insufficiently studied.
Aim. To evaluate the effect of a course of anodal tDCS on motor, cognitive, and affective functions in patients with earlyonset PD.
Materials and methods. In this prospective study, five patients (aged 37–49 years) with clinically confirmed PD (mean disease duration 3.3 ± 4.7 years) were included. All patients received standard antiparkinsonian therapy and a course of 10 anodal tDCS sessions (2 mA, 20 min each, daily for 2 weeks). Motor function (UPDRS-III), cognitive status (MoCA, FAB, TMT-A/B), and affective measures (Beck Depression Inventory, State-Trait Anxiety Inventory, Apathy Scale) were assessed before and after the course.
Results. After completing the tDCS course, the mean UPDRS-III score significantly decreased by 19–20 % (p < 0.05), indicating improved motor function. Cognitive (MoCA, FAB, TMT) and affective (BDI, STAI, Apathy Scale) scores improved slightly but not significantly. No adverse events or dropouts occurred, the procedures were well tolerated by all participants.
Conclusion. These results suggest potential efficacy and a high safety profile of anodal tDCS as an adjunctive therapy in earlyonset PD. As a non-invasive, easily administered technique, tDCS is a promising tool for neuromodulation and rehabilitation in PD. However, further larger randomized trials with long-term follow-up are warranted to confirm these findings.
About the Authors
S. P. BordovskyRussian Federation
Sergey P. Bordovsky, Postgraduate Student of the Department of Nervous Diseases, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
M. R. Dudarov
Russian Federation
Mikail R. Dudarov, Student, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. V. Varfolomeeva
Russian Federation
Arina V. Varfolomeeva, Student, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. A. Kozhina
Russian Federation
Anastasiia A. Kozhina, Student, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. L. Polovinko
Russian Federation
Arseny L. Polovinko, Student, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. A. Makarov
Russian Federation
Andrey A. Makarov, Student, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
S. S. Andreev
Russian Federation
Sergey S. Andreev, Research Intern, Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience
20, Myasnitskaya St., Moscow, 101000
R. T. Murtazina
Russian Federation
Renata T. Murtazina, Research Intern of the Department of Nervous Diseases, Sklifosovsky Institute of Clinical Medicine, Resident of the Kozhevnikov Clinic of Nervous Diseases
8, Bldg. 2, Trubetskaya St., Moscow, 119991
K. V. Shevtsova
Russian Federation
Kseniya V. Shevtsova, Cand. Sci. (Med.), Assistant of the Department of Nervous Diseases, Sklifosovsky Institute of Clinical Medicine
8, Bldg. 2, Trubetskaya St., Moscow, 119991
References
1. Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90. https://doi.org/10.1016/j.lfs.2019.03.057.
2. Thomas B, Beal MF. Parkinson’s disease. Hum Mol Genet. 2007;16(R2): R183–R194. https://doi.org/10.1093/HMG/DDM159.
3. Camerucci E, Mullan AF, Turcano P, Bower J, Piat C, Ahlskog JE, Savica R. 40-Year Incidence of Early-Onset Parkinson’s Disease in Southeast Minnesota. J Parkinsons Dis. 2023;13(6):893–898. https://doi.org/10.3233/JPD-230049.
4. Mehanna R, Smilowska K, Fleisher J, Post B, Hatano T, Pimentel Piemonte ME et al. Age Cutoff for Early-Onset Parkinson’s Disease: Recommendations from the International Parkinson and Movement Disorder Society Task Force on Early Onset Parkinson’s Disease. Mov Disord Clin Pract. 2022;9(7):869–878. https://doi.org/10.1002/MDC3.13523.
5. Thomsen TR, Rodnitzky RL. Juvenile parkinsonism: epidemiology, diagnosis and treatment. CNS Drugs. 2010;24(6):467–477. https://doi.org/10.2165/11533130-000000000-00000.
6. Salles PA, Pizarro-Correa X, Chaná-Cuevas P. Genetics of Parkinson´s disease: Recessive forms. Neurol Perspect. 2024;4(2):100147. https://doi.org/10.1016/j.neurop.2024.100147.
7. Schrag A, Ben-Shlomo Y, Brown R, Marsden CD, Quinn N. Young-onset Parkinson’s disease revisited – clinical features, natural history, and mortality. Mov Disord. 1998;13(6):885–894. https://doi.org/10.1002/MDS.870130605.
8. Riboldi GM, Frattini E, Monfrini E, Frucht SJ, Di Fonzo A. A Practical Approach to Early-Onset Parkinsonism. J Parkinsons Dis. 2022;12(1):1–26. https://doi.org/10.3233/JPD-212815.
9. Koros C, Simitsi AM, Papagiannakis N, Bougea A, Antonelou R, Pachi I et al. Precision Dopaminergic Treatment in a Cohort of Parkinson’s Disease Patients Carrying Autosomal Recessive Gene Variants: Clinical Cohort Data and a Mini Review. Neurol Int. 2024;16(4):833–844. https://doi.org/10.3390/NEUROLINT16040062.
10. Kostić VS. Treatment of young-onset Parkinson’s disease: role of dopamine receptor agonists. Parkinsonism Relat Disord. 2009;15(Suppl. 4):S71–S75. https://doi.org/10.1016/S1353-8020(09)70839-9.
11. Su D, Cui Y, He C, Yin P, Bai R, Zhu J et al. Projections for prevalence of Parkinson’s disease and its driving factors in 195 countries and territories to 2050: modelling study of Global Burden of Disease Study 2021. BMJ. 2025;388:e080952. https://doi.org/10.1136/BMJ-2024-080952.
12. Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583–1590. https://doi.org/10.1002/MDS.25945.
13. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68(5):384–386. https://doi.org/10.1212/01.WNL.0000247740.47667.03.
14. Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020;36(1):1–12. https://doi.org/10.1016/J.CGER.2019.08.002.
15. Gibb WR, Lees AJ. A comparison of clinical and pathological features of young- and old-onset Parkinson’s disease. Neurology. 1988;38(9):1402–1406. https://doi.org/10.1212/WNL.38.9.1402.
16. Ylikotila P, Tiirikka T, Moilanen JS, Kääriäinen H, Marttila R, Majamaa K. Epidemiology of early-onset Parkinson’s disease in Finland. Parkinsonism Relat Disord. 2015;21(8):938–942. https://doi.org/10.1016/j.parkreldis.2015.06.003.
17. Alves G, Wentzel-Larsen T, Aarsland D, Larsen JP. Progression of motor impairment and disability in Parkinson disease: a population-based study. Neurology. 2005;65(9):1436–1441. https://doi.org/10.1212/01.WNL.0000183359.50822.F2.
18. de Bie RMA, Clarke CE, Espay AJ, Fox SH, Lang AE. Initiation of pharmacological therapy in Parkinson’s disease: when, why, and how. Lancet Neurol. 2020;19(5):452–461. https://doi.org/10.1016/S1474-4422(20)30036-3.
19. Zhang X, Huai Y, Wei Z, Yang W, Xie Q, Yi L. Non-invasive brain stimulation therapy on neurological symptoms in patients with multiple sclerosis: A network meta analysis. Front Neurol. 2022;13:1007702. https://doi.org/10.3389/FNEUR.2022.1007702.
20. Bordovsky SP, Murtazina RT, Andreev SS, Meinova TO, Gorlova IuI, Taranova AD et al. Transcranial direct current stimulation in Parkinson’s disease. Meditsinskiy Sovet. 2025;19(12):82–91. (In Russ.) https://doi.org/10.21518/MS2025-228.
21. Lewis A, Rattray B, Flood A. Optimising transcranial direct current stimulation application for the enhancement of exercise performance: a review. Front Physiol. 2025;16:1672603. https://doi.org/10.3389/FPHYS.2025.1672603.
22. Bordovsky S, Andreev S, Murtazina R, Kotenko V, Takhirov R, Gorlova J et al. Targeted tDCS with small electrodes as a promising adjunctive therapy for Parkinson’s Disease. Brain Stimul. 2025;18(1):427–428. https://doi.org/10.1016/J.BRS.2024.12.630.
23. Duan Z, Zhang C. Transcranial direct current stimulation for Parkinson’s disease: systematic review and meta-analysis of motor and cognitive effects. NPJ Parkinsons Dis. 2024;10(1):214. https://doi.org/10.1038/s41531-024-00821-z.
24. Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci. 1992;4(2):134–139. https://doi.org/10.1176/JNP.4.2.134.
25. Chen Y, Jiang H, Wei Y, Ye S, Jiang J, Mak MKY et al. Effects of non-invasive brain stimulation over the supplementary motor area on motor function in Parkinson’s disease: A systematic review and meta-analysis. Brain Stimul. 2025;18(1):1–14. https://doi.org/10.1016/J.BRS.2024.12.005.
26. Lee H, Choi BJ, Kang N. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson’s disease: a systematic review and meta-analysis. J Neuroeng Rehabil. 2024;21(1):205. https://doi.org/10.1186/S12984-024-01505-8.
27. Liu X, Liu H, Liu Z, Rao J, Wang J, Wang P et al. Transcranial Direct Current Stimulation for Parkinson’s Disease: A Systematic Review and MetaAnalysis. Front Aging Neurosci. 2021;13:746797. https://doi.org/10.3389/FNAGI.2021.746797.
28. Dobbs B, Pawlak N, Biagioni M, Agarwal S, Shaw M, Pilloni G et al. Generalizing remotely supervised transcranial direct current stimulation (tDCS): feasibility and benefit in Parkinson’s disease. J Neuroeng Rehabil. 2018;15(1):114. https://doi.org/10.1186/S12984-018-0457-9.
Review
For citations:
Bordovsky SP, Dudarov MR, Varfolomeeva AV, Kozhina AA, Polovinko AL, Makarov AA, Andreev SS, Murtazina RT, Shevtsova KV. Transcranial direct current stimulation in early-onset Parkinson’s disease. Meditsinskiy sovet = Medical Council. 2025;(22):144-151. (In Russ.) https://doi.org/10.21518/ms2025-534


































