Diagnostic potential of electroencephalogram analysis methods in Alzheimer’s disease: A narrative review
https://doi.org/10.21518/ms2025-533
Abstract
This review focuses on the application of electroencephalography for the early diagnosis of Alzheimer’s disease and assesses its potential as an accessible screening tool for cognitive impairment. The objective of this work is to summarize and analyze existing approaches to the application of electroencephalography methods for the diagnosis and monitoring of Alzheimer’s disease, as well as to identify key features of bioelectrical activity associated with cognitive impairment in AD compared to normal aging processes. The review examined 64 original studies (1998–2024) focused on the diagnosis of Alzheimer’s disease using electroencephalography, primarily employing spectral analysis, coherence analysis, event-related potentials, and graph theory. Data synthesis was performed using a descriptive method. Collectively, contemporary methods for analyzing electroencephalographic data demonstrate significant potential for identifying neurophysiological markers of Alzheimer’s disease. Specifically, spectral analysis reveals an increase in delta and theta rhythm power alongside a decrease in alpha activity and individual alpha frequency, reflecting neurodegenerative processes and impaired cognitive regulation. Coherence analysis indicates a disintegration of functional connections between cortical regions, manifested as reduced coherence in the alpha and beta bands and a compensatory increase in slow rhythms. Event-related potential analysis, particularly of the P300 and N400 components, points to slowed information processing and reduced efficiency of cognitive mechanisms. Graph theory methods, specifically small-world network analysis, complement this picture by demonstrating a disrupted balance between local specialization and global integration of neural networks. In turn, the application of machine learning algorithms based on these metrics opens avenues for enhancing diagnostic accuracy, predicting the progression of cognitive impairment, and developing automated systems for the early detection of Alzheimer’s disease. Quantitative electroencephalography analysis methods hold considerable promise for the early screening of Alzheimer’s disease by revealing characteristic patterns of brain activity. But for the effective utilization of EEG, the standardization of recording protocols, unification of analytical methods, and integration with machine learning algorithms are essential.
Keywords
About the Authors
D. V. BoytsovaRussian Federation
Diana V. Boytsova, Junior Researcher of the Department of Mental Disorders in Neurodegenerative Brain Diseases, Scientific and Clinical Research Center of Neuropsychiatry
2, Zagorodnoye Shosse, Moscow, 115191
A. N. Dupik
Russian Federation
Alexandra N. Dupik, Junior Researcher of the Department of Mental Disorders in Neurodegenerative Brain Diseases, Scientific and Clinical Research Center of Neuropsychiatry
2, Zagorodnoye Shosse, Moscow, 115191
E. V. Krivchenkova
Russian Federation
.Elizaveta V. Krivchenkova, Research Assistant of the Department of Schizophrenia and Other Primary Psychotic Disorders, Scientific and Clinical Research Center of Neuropsychiatry
2, Zagorodnoye Shosse, Moscow, 115191
A. V. Andryushchenko
Russian Federation
Alisa V. Andryushchenko, Dr. Sci. (Med.), Professor of the Department of Mental Health, Lomonosov Moscow State University; Chief Researcher, Department of Mental Disorders in Neurodegenerative Brain Diseases, Scientific and Clinical Research Center of Neuropsychiatry, Alekseev Psychiatric Clinical Hospital No. 1
1, Lenin Hills, Moscow, 119991,
2, Zagorodnoye Shosse, Moscow, 115191
V. I. Zakurazhnaya
Russian Federation
Valeriya I. Zakurazhnaya, Junior Researcher of the Department of Schizophrenia and Other Primary Psychotic Disorders, Scientific and Clinical Research Center of Neuropsychiatry
2, Zagorodnoye Shosse, Moscow, 115191
D. S. Andreyuk
Russian Federation
Denis S. Andreyuk, Cand. Sci. (Biol.), Associate Professor of the Faculty of Economics, Lomonosov Moscow State University; Senior Researcher of the Scientific and Organizational Department, Scientific and Clinical Research Center of Neuropsychiatry, Alekseev Psychiatric Clinical Hospital No. 1
1, Lenin Hills, Moscow, 119991,
2, Zagorodnoye Shosse, Moscow, 115191
M. V. Kurmyshev
Russian Federation
Marat V. Kurmyshev, Cand. Sci. (Med.), Deputy Chief Physician for Outpatient and Polyclinic Work
2, Zagorodnoye Shosse, Moscow, 115191
G. P. Kostyuk
Russian Federation
Georgy P. Kostyuk, Dr. Sci. (Med.), Professor, Head of the Department of Mental Health, Lomonosov Moscow State University; Professor of the Department of Psychiatry, Russian Biotechnological University; Professor of the Department of Psychiatry and Psychosomatics, Sechenov First Moscow State Medical University (Sechenov University); Chief Physician, Alekseev Psychiatric Clinical Hospital No. 1
1, Lenin Hills, Moscow, 119991,
11, Volokolamskoe Shosse, Moscow, 125080,
8, Bldg. 2, Trubetskaya St., Moscow, 119991,
2, Zagorodnoye Shosse, Moscow, 115191
E. E. Vasenina
Russian Federation
Elena E. Vasenina, Dr. Sci. (Med.), Associate Professor, Chief Researcher, Department of Mental Disorders in Neurodegenerative Brain Diseases, Scientific and Clinical Research Center of Neuropsychiatry, Alekseev Psychiatric Clinical Hospital No. 1; Professor of the Department of Neurology with a Course in Reflexology and Manual Therapy, Russian Medical Academy of Continuous Professional Education
2, Zagorodnoye Shosse, Moscow, 115191,
2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993
References
1. Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer’s disease: Breaking the memory barrier. Ageing Res Rev. 2024;101:102481. https://doi.org/10.1016/j.arr.2024.102481.
2. Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–446. https://doi.org/10.1016/S0140-6736(20)30367-6.
3. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. https://doi.org/10.1016/S1474-4422(15)70016-5.
4. Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119(4):252–265. https://doi.org/10.1111/j.1600-0447.2008.01326.x.
5. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–292. https://doi.org/10.1016/j.jalz.2011.03.003.
6. Mu Y, Chang KX, Chen YF, Yan K, Wang CX, Hua Q. Diagnosis of Alzheimer’s disease: Towards accuracy and accessibility. J Biol Methods. 2024;11(1):e99010010. https://doi.org/10.14440/jbm.2024.412.
7. Bucci M, Chiotis K, Nordberg A. Alzheimer’s disease profiled by fluid and imaging markers: tau PET best predicts cognitive decline. Mol Psychiatry. 2021;26(10):5888–5898. https://doi.org/10.1038/s41380-021-01263-2.
8. Omar SH, Preddy J. Advantages and Pitfalls in Fluid Biomarkers for Diagnosis of Alzheimer’s Disease. J Pers Med. 2020;10(3):63. https://doi.org/10.3390/jpm10030063.
9. Babiloni C, De Pandis MF, Vecchio F, Buffo P, Sorpresi F, Frisoni GB, Rossini PM. Cortical sources of resting state electroencephalographic rhythms in Parkinson’s disease related dementia and Alzheimer’s disease. Clin Neurophysiol. 2011;122(12):2355–2364. https://doi.org/10.1016/j.clinph.2011.03.029.
10. Caso F, Cursi M, Fanelli G, Falautano M. S8.3 EEG spectral analysis and low-resolution brain electromagnetic tomography (LORETA) in diagnosis of frontotemporal dementia and differences with Alzheimer’s disease and healthy subjects. Clin Neurophysiol. 2011;122(Suppl. 1):S20–S21. https://doi.org/10.1016/S1388-2457(11)60066-7.
11. Vecchio F, Miraglia F, Alú F, Orticoni A, Judica E, Cotelli M, Rossini PM. Contribution of Graph Theory Applied to EEG Data Analysis for Alzheimer’s Disease Versus Vascular Dementia Diagnosis. J Alzheimers Dis. 2021;82(2):871–879. https://doi.org/10.3233/JAD-210394.
12. Ajra Z, Xu B, Dray G, Montmain J, Perrey S. Using shallow neural networks with functional connectivity from EEG signals for early diagnosis of Alzheimer’s and frontotemporal dementia. Front Neurol. 2023;14:1270405. https://doi.org/10.3389/fneur.2023.1270405.
13. Jiao B, Li R, Zhou H, Qing K, Liu H, Pan H et al. Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer’s disease using EEG technology. Alzheimers Res Ther. 2023;15(1):32. https://doi.org/10.1186/s13195-023-01181-1.
14. Jelic V, Johansson SE, Almkvist O, Shigeta M, Julin P, Nordberg A et al. Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol Aging. 2000;21(4):533–540. https://doi.org/10.1016/s0197-4580(00)00153-6.
15. Babiloni C, Carducci F, Lizio R, Vecchio F, Baglieri A, Bernardini S et al. Resting state cortical electroencephalographic rhythms are related to gray matter volume in subjects with mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp. 2013;34(6):1427–1446. https://doi.org/10.1002/hbm.22005.
16. Olichney JM, Taylor JR, Gatherwright J, Salmon DP, Bressler AJ, Kutas M, Iragui-Madoz VJ. Patients with MCI and N400 or P600 abnormalities are at very high risk for conversion to dementia. Neurology. 2008;70(19 Pt 2): 1763–1770. https://doi.org/10.1212/01.wnl.0000281689.28759.ab.
17. Koenig T, Prichep L, Dierks T, Hubl D, Wahlund LO, John ER, Jelic V. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2005;26(2):165–171. https://doi.org/10.1016/j.neurobiolaging.2004.03.008.
18. Rossini PM, Del Percio C, Pasqualetti P, Cassetta E, Binetti G, Dal Forno G et al. Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neuroscience. 2006;143(3):793–803. https://doi.org/10.1016/j.neuroscience.2006.08.049.
19. Zhang H, Zhou QQ, Chen H, Hu XQ, Li WG, Bai Y et al. The applied principles of EEG analysis methods in neuroscience and clinical neurology. Mil Med Res. 2023;10(1):67. https://doi.org/10.1186/s40779-023-00502-7.
20. Corcoran AW, Alday PM, Schlesewsky M, Bornkessel-Schlesewsky I. Toward a reliable, automated method of individual alpha frequency (IAF) quantification. Psychophysiology. 2018;55(7):e13064. https://doi.org/10.1111/psyp.13064.
21. Babiloni C, Del Percio C, Lizio R, Noce G, Lopez S, Soricelli A et al. Abnormalities of Resting State Cortical EEG Rhythms in Subjects with Mild Cognitive Impairment Due to Alzheimer’s and Lewy Body Diseases. J Alzheimers Dis. 2018;62(1):247–268. https://doi.org/10.3233/JAD-170703.
22. Babiloni C, Binetti G, Cassetta E, Dal Forno G, Del Percio C, Ferreri F et al. Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study. Clin Neurophysiol. 2006;117(2): 252–268. https://doi.org/10.1016/j.clinph.2005.09.019.
23. Gianotti LR, Künig G, Lehmann D, Faber PL, Pascual-Marqui RD, Kochi K, Schreiter-Gasser U. Correlation between disease severity and brain electric LORETA tomography in Alzheimer’s disease. Clin Neurophysiol. 2007;118(1):186–196. https://doi.org/10.1016/j.clinph.2006.09.007.
24. Babiloni C, Cassetta E, Binetti G, Tombini M, Del Percio C, Ferreri F et al. Resting EEG sources correlate with attentional span in mild cognitive impairment and Alzheimer’s disease. Eur J Neurosci. 2007;25(12):3742–32757. https://doi.org/10.1111/j.1460-9568.2007.05601.x.
25. Babiloni C, Frisoni G, Steriade M, Bresciani L, Binetti G, Del Percio C et al. Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer’s disease. Clin Neurophysiol. 2006;117(5):1113–1129. https://doi.org/10.1016/j.clinph.2006.01.020.
26. Caso F, Cursi M, Magnani G, Fanelli G, Falautano M, Comi G et al. Quantitative EEG and LORETA: valuable tools in discerning FTD from AD? Neurobiol Aging. 2012;33(10):2343–2356. https://doi.org/10.1016/j.neurobiolaging.2011.12.011.
27. Gianotti LR, Künig G, Faber PL, Lehmann D, Pascual-Marqui RD, Kochi K, Schreiter-Gasser U. Rivastigmine effects on EEG spectra and three-dimensional LORETA functional imaging in Alzheimer’s disease. Psychopharmacology. 2008;198(3):323–332. https://doi.org/10.1007/s00213-008-1111-1.
28. Babiloni C, Vecchio F, Lizio R, Ferri R, Rodriguez G, Marzano N et al. Resting state cortical rhythms in mild cognitive impairment and Alzheimer’s disease: electroencephalographic evidence. J Alzheimers Dis. 2011;26(S3):201–214. https://doi.org/10.3233/JAD-2011-0051.
29. Dattola S, La Foresta F. An eLORETA Longitudinal Analysis of Resting State EEG Rhythms in Alzheimer’s Disease. Applied Sciences. 2020;10(16):5666. https://doi.org/10.3390/app10165666.
30. Gang Y, Li T, Xu X, Zheng Q, Wang W. Research on the pathogenesis of Alzheimer’s disease based on thalamocortical computational model. Front Neurol. 2024;15:1353305. https://doi.org/10.3389/fneur.2024.1353305.
31. Zhou B, Liu Y, Zhang Z, An N, Yao H, Wang P et al. Impaired functional connectivity of the thalamus in Alzheimer’s disease and mild cognitive impairment: a resting-state fMRI study. Curr Alzheimer Res. 2013;10(7):754–766. https://doi.org/10.2174/15672050113109990146.
32. Coyle D, Abuhassan K, Maguire L. Modelling Cortical and Thalamocortical Synaptic Loss and Compensation Mechanisms in Alzheimer’s Disease. In: Bhattacharya BS, Chowdhury FN (eds.). Validating Neuro-¬Computational Models of Neurological and Psychiatric Disorders. Springer Cham; 2015, pp. 221–275. https://doi.org/10.1007/978-3-319-20037-8_9.
33. Babiloni C, Binetti G, Cassetta E, Cerboneschi D, Dal Forno G, Del Percio C et al. Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage. 2004;22(1):57–67. https://doi.org/10.1016/j.neuroimage.2003.09.028.
34. Babiloni C, Lizio R, Carducci F, Vecchio F, Redolfi A, Marino S et al. Resting state cortical electroencephalographic rhythms and white matter vascular lesions in subjects with Alzheimer’s disease: an Italian multicenter study. J Alzheimers Dis. 2011;26(2):331–346. https://doi.org/10.3233/JAD-2011-101710.
35. Babiloni C, Del Percio C, Lizio R, Marzano N, Infarinato F, Soricelli A et al. Cortical sources of resting state electroencephalographic alpha rhythms deteriorate across time in subjects with amnesic mild cognitive impairment. Neurobiol Aging. 2014;35(1):130–142. https://doi.org/10.1016/j.neurobiolaging.2013.06.019.
36. Babiloni C, Frisoni GB, Pievani M, Vecchio F, Lizio R, Buttiglione M et al. Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease. Neuroimage. 2009;44(1):123–135. https://doi.org/10.1016/j.neuroimage.2008.08.005.
37. Babiloni C, Cassetta E, Dal Forno G, Del Percio C, Ferreri F, Ferri R et al. Donepezil effects on sources of cortical rhythms in mild Alzheimer’s disease: Responders vs. Non-Responders. Neuroimage. 2006;31(4):1650–1665. https://doi.org/10.1016/j.neuroimage.2006.02.015.
38. Knott V, Mohr E, Mahoney C, Ilivitsky V. Electroencephalographic coherence in Alzheimer’s disease: comparisons with a control group and population norms. J Geriatr Psychiatry Neurol. 2000;13(1):1–8. https://doi.org/10.1177/089198870001300101.
39. Wang R, Wang J, Yu H, Wei X, Yang C, Deng B. Decreased coherence and functional connectivity of electroencephalograph in Alzheimer’s disease. Chaos. 2014;24(3):033136. https://doi.org/10.1063/1.4896095.
40. Bastos AM, Schoffelen JM. A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Front Syst Neurosci. 2016;9:175. https://doi.org/10.3389/fnsys.2015.00175.
41. Sauseng P, Klimesch W. What does phase information of oscillatory brain activity tell us about cognitive processes? Neurosci Biobehav Rev. 2008;32(5):1001–1013. https://doi.org/10.1016/j.neubiorev.2008.03.014.
42. Sankari Z, Adeli H, Adeli A. Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease. Clin Neurophysiol. 2011;122(5):897–906. https://doi.org/10.1016/j.clinph.2010.09.008.
43. Bowyer SM. Coherence a measure of the brain networks: past and present. Neuropsychiatr Electrophysiol 2016;2:1. https://doi.org/10.1186/s40810-015-0015-7.
44. Klimesch W. α-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci. 2012;16(12):606–617. https://doi.org/10.1016/j.tics.2012.10.007.
45. Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115(7):1490–1505. https://doi.org/10.1016/j.clinph.2004.01.001.
46. Jiang ZY. Abnormal cortical functional connections in Alzheimer’s disease: analysis of inter- and intra-hemispheric EEG coherence. J Zhejiang Univ Sci B. 2005;6(4):259–264. https://doi.org/10.1631/jzus.2005.B0259.
47. Michels L, Muthuraman M, Anwar AR, Kollias S, Leh SE, Riese F et al. Changes of Functional and Directed Resting-State Connectivity Are Associated with Neuronal Oscillations, ApoE Genotype and Amyloid Deposition in Mild Cognitive Impairment. Front Aging Neurosci. 2017;9:304. https://doi.org/10.3389/fnagi.2017.00304.
48. Başar E, Femir B, Emek-Savaş DD, Güntekin B, Yener GG. Increased long distance event-related gamma band connectivity in Alzheimer’s disease. Neuroimage Clin. 2017;14:580–590. https://doi.org/10.1016/j.nicl.2017.02.021.
49. Abazid M, Houmani N, Boudy J, Dorizzi B, Mariani J, Kinugawa K. A Comparative Study of Functional Connectivi y Measures for Brain Network Analysis in the Context of AD Detection with EEG. Entropy (Basel). 2021;23(11):1553. https://doi.org/10.3390/e23111553.
50. Clark RA, Smith K, Escudero J, Ibáñez A, Parra MA. Robust Assessment of EEG Connectivity Patterns in Mild Cognitive Impairment and Alzheimer’s Disease. Front Neuroimaging. 2022;1:924811. https://doi.org/10.3389/fnimg.2022.924811.
51. Hidasi Z, Czigler B, Salacz P, Csibri E, Molnár M. Changes of EEG spectra and coherence following performance in a cognitive task in Alzheimer’s disease. Int J Psychophysiol. 2007;65(3):252–260. https://doi.org/10.1016/j.ijpsycho.2007.05.002.
52. Wada Y, Nanbu Y, Kikuchi M, Koshino Y, Hashimoto T, Yamaguchi N. Abnormal functional connectivity in Alzheimer’s disease: intrahemispheric EEG coherence during rest and photic stimulation. Eur Arch Psychiatry Clin Neurosci. 1998;248(4):203–208. https://doi.org/10.1007/s004060050038.
53. Vaitkevičius A, Kaubrys G, Audronytė E. Distinctive Effect of Donepezil Treatment on P300 and N200 Subcomponents of Auditory Event-Related Evoked Potentials in Alzheimer Disease Patients. Med Sci Monit. 2015;21:1920–1927. https://doi.org/10.12659/MSM.894940.
54. Juckel G, Clotz F, Frodl T, Kawohl W, Hampel H, Pogarell O, Hegerl U. Diagnostic usefulness of cognitive auditory event-related p300 subcomponents in patients with Alzheimers disease? J Clin Neurophysiol. 2008;25(3):147–152. https://doi.org/10.1097/WNP.0b013e3181727c95.
55. Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C. The mismatch negativity (MMN) – a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol. 2012;123(3):424–458. https://doi.org/10.1016/j.clinph.2011.09.020.
56. Chang YS, Chen HL, Hsu CY, Tang SH, Liu CK. Parallel improvement of cognitive functions and P300 latency following donepezil treatment in patients with Alzheimer’s disease: a case-control study. J Clin Neurophysiol. 2014;31(1):81–85. https://doi.org/10.1097/01.wnp.0000436899.48243.5e.
57. Bassett DS, Bullmore ET. Small-World Brain Networks Revisited. Neuroscientist. 2017;23(5):499–516. https://doi.org/10.1177/1073858416667720.
58. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex. 2007;17(1):92–99. https://doi.org/10.1093/cercor/bhj127.
59. Miraglia F, Vecchio F, Marra C, Quaranta D, Alù F, Peroni B et al. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia. Int J Neural Syst. 2020;30(2):2050004. https://doi.org/10.1142/S0129065720500045.
60. Ferri R, Babiloni C, Karami V, Triggiani AI, Carducci F, Noce G et al Stacked autoencoders as new models for an accurate Alzheimer’s disease classification support using resting-state EEG and MRI measurements. Clin Neurophysiol. 2021;132(1):232–245. https://doi.org/10.1016/j.clinph.2020.09.015.
61. Vecchio F, Miraglia F, Alù F, Menna M, Judica E, Cotelli M, Rossini PM. Classification of Alzheimer’s Disease with Respect to Physiological Aging with Innovative EEG Biomarkers in a Machine Learning Implementation. J Alzheimers Dis. 2020;75(4):1253–1261. https://doi.org/10.3233/JAD-200171.
62. Odusami M, Maskeliūnas R, Damaševičius R, Krilavičius T. Analysis of Features of Alzheimer’s Disease: Detection of Early Stage from Functional Brain Changes in Magnetic Resonance Images Using a Finetuned ResNet18 Network. Diagnostics. 2021;11(6):1071. https://doi.org/10.3390/diagnostics11061071.
63. San-Martin R, Fraga FJ, Del Percio C, Lizio R, Noce G, Nobili F et al. Classification of Patients with Alzheimer’s Disease and Dementia with Lewy Bodies using Resting EEG Selected Features at Sensor and Source Levels: A Proof-of-Concept Study. Curr Alzheimer Res. 2021;18(12):956–969. https://doi.org/10.2174/1567205018666211027143944.
64. Teng Q, Liu Z, Song Y, Han K, Lu Y. A survey on the interpretability of deep learning in medical diagnosis. Multimed Syst. 2022;28(6):2335–2355. https://doi.org/10.1007/s00530-022-00960-4.
Review
For citations:
Boytsova DV, Dupik AN, Krivchenkova EV, Andryushchenko AV, Zakurazhnaya VI, Andreyuk DS, Kurmyshev MV, Kostyuk GP, Vasenina EE. Diagnostic potential of electroencephalogram analysis methods in Alzheimer’s disease: A narrative review. Meditsinskiy sovet = Medical Council. 2025;(22):152-162. (In Russ.) https://doi.org/10.21518/ms2025-533


































