Cluster analysis as a new approach to the phenotyping of hypermobility syndrome
https://doi.org/10.21518/ms2025-300
Abstract
Introduction. Joint hypermobility (JH) is a heterogeneous condition that is considered as an isolated condition and in combination with connective tissue dysplasia (CTD), nevertheless, patients with JH have high risks of developing associated conditions, but do not receive proper treatment and appropriate prevention due to difficulties in diagnosis and classification.
Aim. Conduct phenotyping of the JH in order to optimize diagnostics.
Materials and methods. The study involved 262 young men (n = 35) and women (n = 227); the average age was 21.86 ± 0.22 years. JH was determined on a 9-point Beighton scale (1998). Phenotypic signs of CTD were determined by the point‒quantitative method (T.I. Kadurina), JH and control groups were formed. Statistical data processing was carried out in Microsoft Excel 2021, Statistica 13, R Studio. The association search was carried out using the Fisher criterion X2, with the Yates correction. To perform cluster analysis (CA), the R Studio environment, the k-medoids algorithm, the “pam” function in R, the libraries “cluster”, “tidyverse”, “factoextra”, “NbClust”, for validation “clValid” were used.
Results. JH was associated with phenotypic signs of CTD, such as dolichostenomelia, joint crunch, hyperkyphosis/hyperlordosis, low body mass index (BMI), skin’s hyperelasticity, ptosis of internal organs, hypotension, severe myopia. Next, a survey was conducted, as a result of which three clusters were identified. Cluster No. 1 included JH, hyperkyphosis/hyperlordosis, and low BMI. Cluster No. 2 includes JH, hyperelasticity of the skin and low BMI, and the third group includes subjects without JH, ptosis, hyperelasticity of the skin, hyperkyphosis/hyperlordosis and with a BMI >18.5.
Conclusion. The heterogeneity found by CA among the subjects with JH suggests that the phenotypes of JH in the general sample may be close to subtypes of Ehlers-Danlos syndrome or represent their incomplete clinical forms.
About the Authors
K. E. AkhiiarovaRussian Federation
Karina E. Akhiiarova, Cand. Sci. (Med.), Assistant of the Department of Internal Diseases and Clinical Psychology
3, Lenin St., Ufa, 450008
R. I. Khusainova
Russian Federation
Rita I. Khusainova, Dr. Sci. (Biol.), Professor, Professor of the Department of Internal Diseases and Clinical Psychology, Bashkir State Medical University; Leader Researcher of the Department of Personalized and Translational Medicine (PiTM), Laboratory of Genomic Medicine, Endocrinology Research Centre
3, Lenin St., Ufa, 450008,
11, Dmitry Ulyanov St., Moscow, 117036
G. R. Shakhmametova
Russian Federation
Gyuzel R. Shakhmametova, Dr. Sci. (Eng.), Professor, Head of the Department of Computational Mathematics and Cybernetics
32, Zaki Validi St., Ufa, 450076
A. V. Tyurin
Russian Federation
Anton V. Tyurin, Dr. Sci. (Med.), Associate Professor, Head of the Department of Internal Diseases and Clinical Psychology
3, Lenin St., Ufa, 450008
References
1. Martynov A, Nechaeva G. National recommendations of the Russian scientific society of internal medicine for diagnostics, treatment and rehabilitation of patients with connective tissue dysplasia. Medical News of North Caucasus. 2016;11(1):2–76. (In Russ.) https://doi.org/10.14300/mnnc.2016.11001.
2. Sundemo D, Senorski EH, Karlsson L, Horvath A, Juul-Kristensen B, Karlsson J et al. Generalised joint hypermobility increases ACL injury risk and is associated with inferior outcome after ACL reconstruction: a systematic review. BMJ Open Sport Exerc Med. 2019;5(1):e000620. https://doi.org/10.1136/bmjsem-2019-000620.
3. Akhiiarova KE, Khusainova RI, Yalaev BI, Tyurin AV. Polymorphic Variants of the ADAMTS5 Gene as New Markers of Joint Hypermobility. Sovremennaya Revmatologiya. 2023;17(1):45–50. (In Russ.) https://doi.org/10.14412/1996-7012-2023-1-45-50.
4. Nadyrshina D, Zaripova A, Tyurin A, Minniakhmetov I, Zakharova E, Khusainova R. Osteogenesis Imperfecta: Search for Mutations in Patients from the Republic of Bashkortostan (Russia). Genes. 2022;13(1):124. https://doi.org/10.3390/genes13010124.
5. Liaghat B, Pedersen JR, Young JJ, Thorlund JB, Juul-Kristensen B, Juhl CB. Joint hypermobility in athletes is associated with shoulder injuries: a systematic review and meta-analysis. BMC Musculoskelet Disord. 2021;22(1):389. https://doi.org/10.1186/s12891-021-04249-x.
6. Scheper MC, de Vries JE, Juul-Kristensen B, Nollet F, Engelbert RH. The functional consequences of generalized joint hypermobility: a crosssectional study. BMC Musculoskelet Disord. 2014;15:243. https://doi.org/10.1186/1471-2474-15-243.
7. Reddy RS, Tedla JS, Alshahrani MS, Asiri F, Kakaraparthi VN. Comparison and correlation of cervical proprioception and muscle endurance in general joint hypermobility participants with and without non-specific neck pain-a crosssectional study. PeerJ. 2022;10:e13097. https://doi.org/10.7717/peerj.13097.
8. Van Meulenbroek T, Huijnen I, Stappers N, Engelbert R, Verbunt J. Generalized joint hypermobility and perceived harmfulness in healthy adolescents; impact on muscle strength, motor performance and physical activity level. Physiother Theory Pract. 2021;37(12):1438–1447. https://doi.org/10.1080/09593985.2019.1709231.
9. Jensen BR, Sandfeld J, Melcher PS, Johansen KL, Hendriksen P, JuulKristensen B. Alterations in neuromuscular function in girls with generalized joint hypermobility. BMC Musculoskelet Disord. 2016;17(1):410. https://doi.org/10.1186/s12891-016-1267-5.
10. Jindal P, Narayan A, Ganesan S, MacDermid JC. Muscle strength differences in healthy young adults with and without generalized joint hypermobility: a cross-sectional study. BMC Sports Sci Med Rehabil. 2016;8:12. https://doi.org/10.1186/s13102-016-0037-x.
11. Khusainova RI, Tyurin AV, Shapovalova DA, Khusnutdinova EK. Genetic markers of osteoarthritis in women with undifferentiated connective tissue dysplasia. Russian Journal of Genetics. 2017;53(7):816–926. (In Russ.) https://doi.org/10.7868/S0016675817060078.
12. Akhiyarova KE, Sadretdinova LD, Akhmetova AM, Gantseva KhKh, Tyurin AV. Study of qualitative and quantitative body composition in young people with joint hypermobility. Bashkortostan Medical Journal. 2020;15(3):91–93. (In Russ.) Available at: https://repo.bashgmu.ru/article?id=6099.
13. Akhiiarova K, Khusainova R, Minniakhmetov I, Mokrysheva N, Tyurin AV. Peak Bone Mass Formation: Modern View of the Problem. Biomedicines. 2023;11(11):2982. https://doi.org/10.3390/biomedicines11112982.
14. Akkaya KU, Burak M, Erturan S, Yildiz R, Yildiz A, Elbasan B. An investigation of body awareness, fatigue, physical fitness, and musculoskeletal problems in young adults with hypermobility spectrum disorder. Musculoskelet Sci Pract. 2022;62:102642. https://doi.org/10.1016/j.msksp.2022.102642.
15. Tikhomirova NJ, Eliseeva LN. Peculiar features of articular pain syndrome in girls with connective tissue dysplasia signs. Perm Medical Journal. 2015;32(4):37–42. (In Russ.) Available at: https://permmedjournal.ru/PMJ/article/view/3367.
16. Saneeva GA, Yagoda AV. State of bone mineral density in joint hypermobility syndrome. Russian Archive of Internal Medicine 2014;(5):62–65. (In Russ.) Available at: https://www.medarhive.ru/jour/article/view/339?locale=ru_RU.
17. Кенис ВМ, Сапоговский АВ, Димитриева АЮ. Оценка гипермобильности суставов и порога болевой чувствительности у детей с мобильным плоскостопием. В: Современные достижения травматологии и ортопедии. СПб.: Российский ордена Трудового Красного Знамени научно-исследовательский институт травматологии и ортопедии им. Р.Р. Вредена (Санкт-Петербург); 2018. С. 116–117. Режим доступа: https://www.elibrary.ru/whndfw.
18. Khaibullina DH, Maksimov YN, Khaibullina AR, Mansurov DM. Back pain and joint hypermobility syndrome (clinical characteristics). Russian Journal of Pain. 2019;17(S1):66. (In Russ.) Available at: https://painrussia.ru/pdf/web/viewer.html?file=/russian-Journal-of-Pain/SE%2019.pdf.
19. Yalaev B, Tyurin A, Prokopenko I, Karunas A, Khusnutdinova E, Khusainova R. Using a Polygenic Score to Predict the Risk of Developing Primary Osteoporosis. Int J Mol Sci. 2022;23(17):10021. https://doi.org/10.3390/ijms231710021.
20. Ghazi L, Ahmad T, Wilson FP. A Clinical Framework for Evaluating Machine Learning Studies. JACC Heart Fail. 2022;10(9):648–650. https://doi.org/10.1016/j.jchf.2022.07.002.
21. Kaufman L, Rousseeuw PJ. Finding Groups in Data—An Introduction to Cluster Analysis. New York: John Wiley & Sons Inc.; 1990. https://doi.org/10.1002/9780470316801.
22. Akhiiarova KE, Gantseva KhKh, Khusainova RI, Tyurin AV. Phenotypic manifestations of connective tissue dysplasia in individuals with joint hypermobility. Meditsinskiy Sovet. 2022;16(21):156–161. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-21-156-161.
23. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):8–26. https://doi.org/10.1002/ajmg.c.31552.
24. Coombes CE, Liu X, Abrams ZB, Coombes KR, Brock G. Simulation-derived best practices for clustering clinical data. J Biomed Inform. 2021;118:103788. https://doi.org/10.1016/j.jbi.2021.103788.
25. Danesh V, Arroliga AC, Bourgeois JA, Boehm LM, McNeal MJ, Widmer AJ et al. Symptom Clusters Seen in Adult COVID-19 Recovery Clinic Care Seekers. J Gen Intern Med. 2023;38(2):442–449. https://doi.org/10.1007/s11606-022-07908-4.
26. Coombes CE, Abrams ZB, Li S, Abruzzo LV, Coombes KR. Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia. J Am Med Inform Assoc. 2020;27(7):1019–1027. https://doi.org/10.1093/jamia/ocaa060.
27. Zohdi H, Natale L, Scholkmann F, Wolf U. Intersubject Variability in Cerebrovascular Hemodynamics and Systemic Physiology during a Verbal Fluency Task under Colored Light Exposure: Clustering of Subjects by Unsupervised Machine Learning. Brain Sci. 2022;12(11):1449. https://doi.org/10.3390/brainsci12111449.
28. Dashtban A, Mizani MA, Pasea L, Denaxas S, Corbett R, Mamza JB et al. Identifying subtypes of chronic kidney disease with machine learning: development, internal validation and prognostic validation using linked electronic health records in 350,067 individuals. EBioMedicine. 2023;89:104489. https://doi.org/10.1016/j.ebiom.2023.104489.
29. Ross MK, Eckel SP, Bui AAT, Gilliland FD. Asthma clustering methods: a literature-informed application to the children’s health study data. J Asthma. 2022;59(7):1305–1318. https://doi.org/10.1080/02770903.2021.1923738.
30. Leis AM, McSpadden E, Segaloff HE, Lauring AS, Cheng C, Petrie JG et al. K-medoids clustering of hospital admission characteristics to classify severity of influenza virus infection. Influenza Other Respir Viruses. 2023;17(3):e13120. https://doi.org/10.1111/irv.13120.
31. Ritelli M, Chiarelli N, Cinquina V, Zoppi N, Bertini V, Venturini M, Colombi M. RNA-Seq of Dermal Fibroblasts from Patients with Hypermobile EhlersDanlos Syndrome and Hypermobility Spectrum Disorders Supports Their Categorization as a Single Entity with Involvement of Extracellular Matrix Degrading and Proinflammatory Pathomechanisms. Cells. 2022;11(24):4040. https://doi.org/10.3390/cells11244040.
32. Schubart JR, Schaefer E, Hakim AJ, Francomano CA, Bascom R. Use of Cluster Analysis to Delineate Symptom Profiles in an Ehlers-Danlos Syndrome Patient Population. J Pain Symptom Manage. 2019;58(3):427–436. https://doi.org/10.1016/j.jpainsymman.2019.05.013.
Review
For citations:
Akhiiarova KE, Khusainova RI, Shakhmametova GR, Tyurin AV. Cluster analysis as a new approach to the phenotyping of hypermobility syndrome. Meditsinskiy sovet = Medical Council. 2025;(22):190-196. (In Russ.) https://doi.org/10.21518/ms2025-300


































