Индолкарбинол: механизмы действия, эффекты и перспективы клинического применения
https://doi.org/10.21518/ms2025-557
Аннотация
В статье перечислены защитные эффекты индолкарбинола (IC) и его производного – дииндолилметана (DIM) – в отношении функционирования сердечно-сосудистой, нервной, репродуктивной, костно-мышечной и иммунной систем, а также печени. Экспериментальные данные свидетельствуют о том, что IC и DIM обеспечивают защиту органов и тканей благодаря своим антиоксидантным, противовоспалительным, антиапоптотическим, иммуномодулирующим и ксенобиотическим свойствам. До настоящего времени большинство данных о защитных эффектах IC и DIM при лечении различных заболеваний получено только в доклинических исследованиях, что подчеркивает острую необходимость проведения крупномасштабных клинических испытаний этих многообещающих фитохимических веществ. В статье рассматриваются молекулярные механизмы действия IC и DIM, их фармакокинетика и побочные эффекты в эксперименте. Представлены данные о клинической эффективности и безопасности лекарственного препарата на основе IC в клинической практике. Дальнейшее углубленное исследование эффективности и безопасности препаратов IC/DIM позволит значительно расширить арсенал фармакологических средств для борьбы с социально значимыми заболеваниями. Проанализированные нами исследования показали, что DIM и IC имеют общие и несколько различных механизмов противоопухолевого действия, эффективность которых зависит от вида опухоли и/или генотипа линии раковых клеток. Например, оба соединения влияют на развитие клеточного цикла рака молочной железы и подавляют рост и миграцию клеток. Кроме того, эти соединения повышают экспрессию детоксицирующих и антиоксидантных ферментов посредством активации Nrf2-зависимого пути, а также могут влиять на пролиферацию клеток, апоптоз, миграцию, инвазию, ангиогенез и иммунитет. В статье рассмотрены все основные механизмы противоопухолевого действия.
Об авторе
Е. Н. КареваРоссия
Карева Елена Николаевна, д.м.н., профессор, профессор кафедры молекулярной фармакологии и радиобиологии имени академика П.В. Сергеева, Российский национальный исследовательский медицинский университет имени Н.И. Пирогова; профессор кафедры фармакологии Института цифрового биодизайна и искусственного интеллекта в медицине, Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
117997, Москва, ул. Островитянова, д. ,
119991, Москва, ул. Трубецкая, д. 8, стр. 2
Список литературы
1. Srikanth Y, Reddy DH, Anusha VL, Dumala N, Viswanadh MK, Chakravarthi G et al. Unveiling the Multifaceted Pharmacological Actions of Indole-3- Carbinol and Diindolylmethane: A Comprehensive Review. Plants. 2025;14(5):827. https://doi.org/10.3390/plants14050827.
2. Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab Dispos. 2015;43(10):1522–1535. https://doi.org/10.1124/dmd.115.064246.
3. Safe S. Molecular biology of the Ah receptor and its role in carcinogenesis. Toxicol Lett. 2001;120(1-3):1–7. https://doi.org/10.1016/s0378-4274(01)00301-0.
4. Li Y, Li X, Sarkar FH. Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J Nutr. 2003;133(4):1011–1019. https://doi.org/10.1093/jn/133.4.1011.
5. Saw CL, Cintrón M, Wu TY, Guo Y, Huang Y, Jeong WS, Kong AN. Pharmacodynamics of dietary phytochemical indoles IC and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos. 2011;32(5):289–300. https://doi.org/10.1002/bdd.759.
6. Шиловский ГА, Сорокина ЕВ, Орловский ИВ. Транскрипционный фактор NRF2 – мишень активирующих антиоксидантную систему клетки препаратов: перспективные применения при возрастных заболеваниях. Клиническая геронтология. 2021;(11-12):57–62. https://doi.org/10.26347/1607-2499202111-12057-062.
7. Watson GW, Beaver LM, Williams DE, Dashwood RH, Ho E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J. 2013;15(4):951–961. https://doi.org/10.1208/s12248-013-9504-4.
8. Wu TY, Khor TO, Su ZY, Saw CL, Shu L, Cheung KL et al. Epigenetic modifications of Nrf2 by 3,3'-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J. 2013;15(3):864–874. https://doi.org/10.1208/s12248-013-9493-3.
9. Licznerska BE, Szaefer H, Murias M, Bartoszek A, Baer-Dubowska W. Modulation of CYP19 expression by cabbage juices and their active components: indole-3- carbinol and 3,3'-diindolylmethene in human breast epithelial cell lines. Eur J Nutr. 2013;52(5):1483–1492. https://doi.org/10.1007/s00394-012-0455-9.
10. Yuan F, Chen DZ, Liu K, Sepkovic DW, Bradlow HL, Auborn K. Anti-estrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res. 1999;19(3A):1673–1680. Available at: https://pubmed.ncbi.nlm.nih.gov/10470100.
11. Bradlow HL, Telang NT, Sepkovic DW, Osborne MP. 2-hydroxyestrone: the ‘good’ estrogen. J Endocrinol. 1996;150(Suppl.):S259–S265. Available at: https://pubmed.ncbi.nlm.nih.gov/8943806/.
12. Reed GA, Peterson KS, Smith HJ, Gray JC, Sullivan DK, Mayo MS et al. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1953–1960. https://doi.org/10.1158/1055-9965.EPI-05-0121.
13. Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell. 2010;21(7):1166–1177. https://doi.org/10.1091/mbc.e09-08-0689.
14. Biersack B. 3,3'-Diindolylmethane and its derivatives: nature-inspired strategies tackling drug resistant tumors by regulation of signal transduction, transcription factors and microRNAs. Cancer Drug Resist. 2020;3(4):867–878. https://doi.org/10.20517/cdr.2020.53.
15. Власов АВ, Якушевская ОВ. Химиопрофилактические свойства 3,3'-дииндолилметана: от экспериментального до клинического применения. Гинекология. 2024;26(3):270–274. https://doi.org/10.26442/20795696.2024.3.202953.
16. Ho JN, Jun W, Choue R, Lee J. IC and ICZ inhibit migration by suppressing the EMT process and FAK expression in breast cancer cells. Mol Med Rep. 2013;7(2):384–388. https://doi.org/10.3892/mmr.2012.1198.
17. Li WX, Chen LP, Sun MY, Li JT, Liu HZ, Zhu W. 3’3-Diindolylmethane inhibits migration, invasion and metastasis of hepatocellular carcinoma by suppressing FAK signaling. Oncotarget. 2015;6(27):23776–23792. https://doi.org/10.18632/oncotarget.4196.
18. Wong CP, Hsu A, Buchanan A, Palomera-Sanchez Z, Beaver LM, Houseman EA et al. Effects of sulforaphane and 3,3'-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS ONE. 2014;9(1):e86787. https://doi.org/10.1371/journal.pone.0086787.
19. Wang ML, Shih CK, Chang HP, Chen YH. Antiangiogenic activity of indole-3- carbinol in endothelial cells stimulated with activated macrophages. Food Chem. 2012;134(2):811–820. https://doi.org/10.1016/j.foodchem.2012.02.185.
20. Wu HT, Lin SH, Chen YH. Inhibition of cell proliferation and in vitro markers of angiogenesis by indole-3-carbinol, a major indole metabolite present in cruciferous vegetables. J Agric Food Chem. 2005;53(13):5164–5169. https://doi.org/10.1021/jf050034w.
21. Kunimasa K, Kobayashi T, Kaji K, Ohta T. Antiangiogenic effects of indole-3- carbinol and 3,3'-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC. J Nutr. 2010;140(1):1–6. https://doi.org/10.3945/jn.109.112359.
22. Tsai JT, Liu HC, Chen YH. Suppression of inflammatory mediators by cruciferous vegetable-derivedindole-3-carbinoland phenylethyl isothiocyanate in lipopolysaccharide-activated macrophages. Mediators Inflamm. 2010;2010:293642. https://doi.org/10.1155/2010/293642.
23. Jiang J, Kang TB, Shim do W, Oh NH, Kim TJ, Lee KH. Indole-3- carbinolinhibitsLPS-induced inflammatory response by blocking TRIFdependent signaling pathway in macrophages. Food Chem Toxicol. 2013;57:256–261. https://doi.org/10.1016/j.fct.2013.03.040.
24. Cho HJ, Seon MR, Lee YM, Kim J, Kim JK, Kim SG, Park JH. 3,3'-Diindolylmethanesuppressestheinflammatory response to lipopolysaccharide in murine macrophages. J Nutr. 2008;138(1):17–23. https://doi.org/10.1093/jn/138.1.17.
25. Park SY, Shim JH, Kim JD, Yoon Park JH. The Effect of 12-O-Tetradecanoylphorbol13-acetate-induced COX-2 Expression by 3,3'-Diindolylmethane (DIM) on Human Mammary Epithelial Cells. J Korean Soc Food Sci Nutr. 2012;41(12):1701–1707. Available at: https://www.e-jkfn.org/journal/view.html?uid=5097&vmd=Full.
26. Rouse M, Rao R, Nagarkatti M, Nagarkatti PS. 3,3'-diindolylmethane ameliorates experimental autoimmune encephalomyelitis by promoting cell cycle arrest and apoptosis in activated T cells through microRNA signaling pathways. J Pharmacol Exp Ther. 2014;350(2):341–352. https://doi.org/10.1124/jpet.114.214742.
27. Elliott DM, Nagarkatti M, Nagarkatti PS. 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells. J Pharmacol Exp Ther. 2016;357(1):177–187. https://doi.org/10.1124/jpet.115.226563.
28. Singh NP, Singh UP, Rouse M, Zhang J, Chatterjee S, Nagarkatti PS, Nagarkatti M. Dietary Indoles Suppress Delayed-Type Hypersensitivity by Inducing a Switch from Proinflammatory Th17 Cells to Anti-Inflammatory Regulatory T Cells through Regulation of MicroRNA. J Immunol. 2016;196(3):1108–1122. https://doi.org/10.4049/jimmunol.1501727.
29. Higdon J, Drake VJ, Delage B, Williams DE. Indole-3-carbinol. Linus Pauling Institute, Micronutrient Information Center, Oregon State University; 2025. Available at: https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/indole-3-carbinol.
30. Choi KM, Yoo HS. Amelioration of Hyperglycemia-Induced Nephropathy by 3,3'-Diindolylmethane in Diabetic Mice. Molecules. 2019;24(24):4474. https://doi.org/10.3390/molecules24244474.
31. Maiyoh GK, Kuh JE, Casaschi A, Theriault AG. Cruciferous indole-3-carbinol inhibits apolipoprotein B secretion in HepG2 cells. J Nutr. 2007;137(10):2185–2189. https://doi.org/10.1093/jn/137.10.2185.
32. Chang HP, Wang ML, Hsu CY, Liu ME, Chan MH, Chen YH. Suppression of inflammation-associated factors by indole-3-carbinol in mice fed high-fat diets and in isolated, co-cultured macrophages and adipocytes. Int J Obes. 2011;35(12):1530–1538. https://doi.org/10.1038/ijo.2011.12.
33. Okulicz M, Hertig I, Chichlowska J. Effects of indole-3-carbinol on metabolic parameters and on lipogenesis and lipolysis in adipocytes. Czech J Anim Sci. 2009;54(4):182–189. https://doi.org/10.17221/1745-CJAS.
34. Choi Y, Um SJ, Park T. Indole-3-carbinol directly targets SIRT1 to inhibit adipocyte differentiation. Int J Obes. 2013;37(6):881–884. https://doi.org/10.1038/ijo.2012.158.
35. Mao X, Paerhati G, Wu Y, Cheng LF. Modulation of gut microbiota, upregulation of ZO-1, and promotion of metabolism as therapeutic mechanisms of indole-3-carbinol against obesity in mice. Front Pharmacol. 2024;15:1499142. https://doi.org/10.3389/fphar.2024.1499142.
36. Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol. 2018;19(2):56–64. https://doi.org/10.1016/j.ajg.2018.03.002.
37. Munakarmi S, Chand L, Shin HB, Jang KY, Jeong YJ. Indole-3-Carbinol Derivative DIM Mitigates Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Inflammatory Response, Apoptosis and Regulating Oxidative Stress. Int J Mol Sci. 2020;21(6):2048. https://doi.org/10.3390/ijms21062048.
38. Ramakrishna K, Sinku S, Majumdar S, Singh N, Gajendra TA, Rani A, Krishnamurthy S. Indole-3-carbinol ameliorated the thioacetamide-induced hepatic encephalopathy in rats. Toxicology. 2023;492:153542. https://doi.org/10.1016/j.tox.2023.153542.
39. Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem. 2018;55:12–25. https://doi.org/10.1016/j.jnutbio.2017.11.011.
40. Ping J, Gao AM, Xu D, Li RW, Wang H. Therapeutic effect of indole-3-carbinol on pig serum-induced hepatic fibrosis in rats. Yao Xue Xue Bao. 2011;46(8):915–921. (In Chinese) Available at: https://pubmed.ncbi. nlm.nih.gov/22007515/.
41. Paliwal P, Chauhan G, Gautam D, Dash D, Patne SCU, Krishnamurthy S. Indole3-carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn-Schmiedebergs Arch Pharmacol. 2018;391(6):613–625. https://doi.org/10.1007/s00210-018-1488-2.
42. Ramakrishna K, Jain SK, Krishnamurthy S. Pharmacokinetic and Pharmacodynamic Properties of Indole-3-carbinol in Experimental Focal Ischemic Injury. Eur J Drug Metab Pharmacokinet. 2022;47(4):593–605. https://doi.org/10.1007/s13318-022-00771-y.
43. Rzemieniec J, Wnuk A, Lasoń W, Bilecki W, Kajta M. The neuroprotective action of 3,3'-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/ CYP19A1 signaling. Apoptosis. 2019;24(5-6):435–452. https://doi.org/10.1007/s10495-019-01522-2.
44. Peng L, Zhu X, Wang C, Jiang Q, Yu S, Song G et al. Indole-3-carbinol (I3C) reduces apoptosis and improves neurological function after cerebral ischemia–reperfusion injury by modulating microglia inflammation. Sci Rep. 2024;14(1):3145. https://doi.org/10.1038/s41598-024-53636-6.
45. Matsumoto K, Kinoshita K, Yoshimizu A, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Laquinimod and 3,3'-diindolylemethane alleviate neuropathological events and neurological deficits in a mouse model of intracerebral hemorrhage. J Neuroimmunol. 2020;342:577195. https://doi.org/10.1016/j.jneuroim.2020.577195.
46. Gehrcke M, Sari MHM, Ferreira LM, Barbieri AV, Giuliani LM, Prado VC et al. Nanocapsules improve indole-3-carbinol photostability and prolong its antinociceptive action in acute pain animal models. Eur J Pharm Sci. 2018;111:133–141. https://doi.org/10.1016/j.ejps.2017.09.050.
47. Deng W, Zong J, Bian Z, Zhou H, Yuan Y, Zhang R et al. Indole-3- carbinolprotectsagainst pressure overload induced cardiac remodeling via activating AMPK-α. Mol Nutr Food Res. 2013;57(9):1680–1687. https://doi.org/10.1002/mnfr.201300012.
48. Deng W, Wei L, Zong J, Bian Z, Zhou H, Zhang R, Tang Q. Attenuation of cardiac remodeling by indole-3-carbinolinmice is associated with improved energy metabolism. Int J Cardiol. 2014;172(3):e531–e533. https://doi.org/10.1016/j.ijcard.2014.01.066.
49. Ramakrishna K, Krishnamurthy S. Indole-3-carbinol ameliorated the isoproterenol-induced myocardial infarction via multimodal mechanisms in Wistar rats. Nat Prod Res. 2022;36(23):6044–6049. https://doi.org/10.1080/14786419.2022.2041632.
50. Ampofo E, Lachnitt N, Rudzitis-Auth J, Schmitt BM, Menger MD, Laschke MW. Indole-3-carbinol is a potent inhibitor of ischemia–reperfusion–induced inflammation. J Surg Res. 2017;215:34–46. https://doi.org/10.1016/j.jss.2017.03.019.
51. Zhu Z, Xu W, Liu L. Ovarian aging: Mechanisms and intervention strategies. Med Rev. 2023;2(6):590–610. https://doi.org/10.1515/mr-2022-0031.
52. Hu H, Li F, Zhu F, Li J, Wang S, He Z et al. Indole-3-carbinolamelioratesovarian damagein female old mice through Nrf2/HO-1 pathway activation. Biochem Pharmacol. 2024;223:116193. https://doi.org/10.1016/j.bcp.2024.116193.
53. Baez-Gonzalez AS, Carrazco-Carrillo JA, Figueroa-Gonzalez G, QuintasGranados LI, Padilla-Benavides T, Reyes-Hernandez OD. Functional effect of indole-3 carbinol in the viability and invasive properties of cultured cancer cells. Biochem Biophys Rep. 2023;35:101492. https://doi.org/10.1016/j.bbrep.2023.101492.
54. Adwas AA, Elkhoely AA, Kabel AM, Abdel-Rahman MN, Eissa AA. Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother. 2016;22(1):36–43. https://doi.org/0.1016/j.jiac.2015.10.001.
55. Hajra S, Patra AR, Basu A, Bhattacharya S. Prevention of doxorubicin (DOX)- induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed Pharmacother. 2018;101:228–243. https://doi.org/10.1016/j.biopha.2018.02.088.
56. Ilias I, Milionis C, Zoumakis E. An Overview of Glucocorticoid-Induced Osteoporosis. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK278968/.
57. Lin H, Gao X, Chen G, Sun J, Chu J, Jing K et al. Indole-3-carbinolasinhibitorsofg lucocorticoid-induced apoptosis in osteoblastic cells through blocking ROSmediated Nrf2 pathway. Biochem Biophys Res Commun. 2015;460(2):422–427. https://doi.org/10.1016/j.bbrc.2015.03.049.
58. Ma Y, Zhu Y, Wang F, Zhao G, Huang L, Lu R et al. 3,3'-Diindolylmethane promotes bone formation – A assessment in MC3T3-E1 cells and zebrafish. Biochem Pharmacol. 2024;230(Pt 3):116618. https://doi.org/10.1016/j.bcp.2024.116618.
59. Beaver LM, Yu TW, Sokolowski EI, Williams DE, Dashwood RH, Ho E. 3,3'-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol. 2012;263(3):345–351. https://doi.org/10.1016/j.taap.2012.07.007.
60. Boyle MC, Crabbs TA, Wyde ME, Painter JT, Hill GD, Malarkey DE et al. Intestinal lymphangiectasis and lipidosis in rats following subchronic exposure to indole-3-carbinol via oral gavage. Toxicol Pathol. 2012;40(4):561–576. https://doi.org/10.1177/0192623311436178.
61. Wyde ME, Boyle MC, Herbert RA, Nyska A, Adams ET, Atkinson B et al . Toxicology studies of indole-3-carbinol in F344/N rats and B6C3F1/N mice and toxicology and carcinogenesis studies of indole-3-carbinol in Harlan Sprague Dawley rats and B6C3F1/N mice (gavage studies). Natl Toxicol Program Tech Rep Ser. 2017;(584):NTP-TR-584. https://doi.org/10.22427/NTP-TR-584.
62. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;67(S28-29):111–116. https://doi.org/10.1002/(sici)1097-4644(1997)28/29+3.0.co;2-k.
63. McAlindon TE, Gulin J, Chen T, Klug T, Lahita R, Nuite M. Indole-3-carbinol in women with SLE: effect on estrogen metabolism and disease activity. Lupus. 2001;10(11):779–783. https://doi.org/10.1177/096120330101001104.
64. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810–815. https://doi.org/10.1016/S0194-5998(98)70274-8.
65. Reed GA, Arneson DW, Putnam WC, Smith HJ, Gray JC, Sullivan DK et al. Singledose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3'-diindolylmethane. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2477–2481. https://doi.org/10.1158/1055-9965.EPI-06-0396.
66. Киселев ВИ, Сметник ВП, Сутурина ЛВ, Селиванов СП, Рудакова ЕБ, Рахматуллина ИР u др. Индолкарбинол – метод мультитаргетной терапии при циклической мастодинии. Акушерство и гинекология. 2013;(7):56–63. Режим доступа: https://elibrary.ru/rfkyoj.
67. Родионов ВВ, Сметник АА. Доброкачественные заболевания молочных желез. Акушерство и гинекология: новости, мнения, обучение. 2018;(1):90–100. Режим доступа: https://acu-gin-journal.ru/ru/jarticles_acu/342.html.
68. Su J, Fang H, Lin Y, Yao Y, Liu Y, Zhong Y at et al. 3,3'-Diindolylmethane Ameliorates Metabolism Dysfunction-Associated Fatty Liver Disease via AhR/p38 MAPK Signaling. Nutrients. 2025;15;17(10):1681. https://doi.org/10.3390/nu17101681.
69. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed. Thomson Reuters; 2008. 788 p.
70. Муйжнек ЕЛ, Киселев ВИ, Рожкова НИ, Ашрафян ЛА. Между мастопатией и раком молочной железы: факторы риска и патогенетическое лечение. М.: ГЭОТАР-Медиа; 2024. 336 c.
71. Pondugula SR, Flannery PC, Abbott KL, Coleman ES, Mani S, Samuel T, Xie W. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR. Toxicol Lett. 2015;232(3):580–589. https://doi.org/10.1016/j.toxlet.2014.12.015.
Рецензия
Для цитирования:
Карева ЕН. Индолкарбинол: механизмы действия, эффекты и перспективы клинического применения. Медицинский Совет. 2025;(23):151-159. https://doi.org/10.21518/ms2025-557
For citation:
Kareva EN. Indolecarbinol: Mechanisms of action, effects and prospects for clinical use. Meditsinskiy sovet = Medical Council. 2025;(23):151-159. (In Russ.) https://doi.org/10.21518/ms2025-557
JATS XML


































