Effect of CYP3A5*3 polymorphism on anti-inflamatory therapy in children with bronchial asthma
https://doi.org/10.21518/2079-701X-2019-11-146-151
Abstract
Previous pharmacogenetic studies demonstrate significant genes’ polymorphisms effect on the efficacy and safety of pharmacotherapy, including in bronchial asthma (BA). According to the literature, there are data on the effect of polymorphisms CYP3A4*22 and CYP3A5*3 on the efficacy of inhaled corticosteroids in children with BA. Further research on the effect of pharmacogenetic features on the efficacy and safety of drugs is one of the way to optimize asthma therapy in children.
Purpose. Identification of possible ways to optimize asthma therapy by the analysis of CYP3A5 (A6986G) gene polymorphism effect on the asthma therapy efficacy.
Materials and methods. The study was conducted on the basis of three children’s polyclinics of Moscow. 100 children aged 6–17 years with an established diagnosis of BA were included. Dynamic assessment of asthma control and the amount of therapy needed was carried out. All patients underwent genotyping for the A6986G polymorphism of CYP3A5 gene by real-time PCR. Statistical data analysis was carried out using a programming language for statistical data processing R.3.4.0.
Results. It was found that 8% of children with asthma were heterozygous for the A6986G polymorphism of the CYP3A5 gene, 92% of respondents were homozygous with the GG genotype. In 6 out of 8 heterozygotes, the amount of control therapy corresponded the third and fourth therapy stages according to GINA criteria. In the group of moderate and severe BA, the number of heterozygotes for the A6986G polymorphic marker of the CYP3A5 gene was statistically higher compared to the group of children with mild BA (p = 0,048).
Conclusion. Thus, we identified a statistically significant difference in the occurrence of heterozygotes for the A6986G polymorphism of the CYP3A5 gene between groups of children with mild asthma and patients with moderate and severe asthma. The AG genotype and the presence of the A allele (CYP3A5 gene (A6986G)) are associated with more severe BA and the need for more anti-inflammatory therapy.
About the Authors
A. K. ZastrozhinaRussian Federation
Zastrozhina Anastasia Konstantinovna – Doctor
117463, Moscow, 23 Golubinskaya str., bldg. 2
S. V. Zaitseva
Russian Federation
Zaitseva Svetlana Vladimirovna – Candidate of Medical Sciences, Associate Professor of the Department of Pediatrics
127473, Moscow, 20, Delegateskaya St., b. 1
E. A. Grishina
Russian Federation
Grishina Elena Anatolyevna – Cand. of Sci. (Bio.), Leading Researcher of Molecular Biological Research Unit, Scientific Research Centre
125993, Moscow, Barrikadnaya St., 2/1, b. 1
K. A. Ryzhykova
Russian Federation
Ryzhykova Kristina Anatolyevna – Junior Researcher of Molecular Biological Research Unit, Scientific Research Centre
125993, Moscow, Barrikadnaya St., 2/1, b. 1
O. O. Panfeorova
Russian Federation
Panfeorova Olga Olegovna – Chief Physician
117463, Moscow, 23 Golubinskaya str., bldg. 2
S. Y. Kalenov
Russian Federation
Kalenov Sergei Yevgenievich – Cand. of Sci. (Med.), Deputy Chief Physician for Treatment
117463, Moscow, 23 Golubinskaya str., bldg. 2
O. I. Soboleva
Russian Federation
Soboleva Olga Ilyinichna – AllergistImmunologist
117463, Moscow, 23 Golubinskaya str., bldg. 2
D. A. Sychyov
Russian Federation
Sychyov Dmitry Alexeyevich – Associate Member of the RAS, Dr. of Sci. (Med.), Professor, Prorector in Development and Innovation, Head of Chair for Clinical Pharmacology and Therapy Department
125993, Moscow, Barrikadnaya St., 2/1, b. 1
I. N. Zakharova
Russian Federation
Zakharova Irina Nikolaevna – Dr. of Sci (Med), Professor, Head of the Department of Pediatrics with the course of polyclinic pediatrics named after G.N. Speranskiy
125993, Moscow, Barrikadnaya St., 2/1, b. 1
References
1. Polikarpov A.V., Aleksandrova G.A., Golubeva N.A. Statistical data. Overall incidence in child population of Russia (aged 0—14 years old) in 2017. Part VI. 2018, p.144 Available at: https://www.rosminzdrav.ru/ministry/61/22/stranitsa979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2017-god (In Russ).
2. National program «Bronchial asthma in children. Therapeutic strategies and preventive measures». 5th edition, revised and enlarged. М.: Layout original, 2017. (In Russ).
3. Global Strategy for Asthma Management and Prevention (2018 update).
4. Federal clinical guideline for the treatment of atopic asthma, 2015 (In Russ).
5. Federal clinical guideline for the treatment of broncial asthma in children. 2017. (In Russ).
6. Murai T., Reilly C.A., Ward R.M., Yost G.S. The inhaled glucocorticoid fluticasone propionate efficiently inactivates cytochrome P450 3A5, a predominant lung P450 enzyme. Chem Res Toxicol. 2010;23:1356–1364.
7. Price A.C., Sisson J.R., Pereira A., Dallow N., Daley‐Yates P.T. Beclomethasone dipropionat: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in men. Br. J. Clin. Pharmacol. 2001;51:400-409.
8. Zastrozhina A.K., Sycheov D.A. Pharmaco genetic aspects of efficacy and safety of inhaled glucocorticosteroids in broncial asthma treatment. Klin. Pharmacol. Ter. 2018;27(4):64-68. doi 10.32756/0869-5490-2018-5-64-68. (In Russ)
9. Leeder J.S., Gaedigk R., Marcucci K.A., Gaedigk A., Vyhlidal C.A., Schindel B.P., et al. Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther. 2005;314:626-635.
10. Koch I., Weil R., Wolbold R., Brockmoller J., Hustert E., Burk O., et al. Interindividual variability and tissue specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos. 2002;30:1108-1114.
11. Leclerc J., Tournel G., Courcot-Ngoubo Ngangue E., Pottier N., Lafitte J.J., Jaillard S., et al. Profiling gene expression of whole cytochrome P450 superfamily in human bronchial and peripheral lung tissues: Differential expression in non-small cell lung cancers. Biochimie. 2010;92:292-306.
12. Sycheov D. A., Ramenskaya G.V., Ignatiev I.V., Kukes V.G. Clinical pharmacogenetics: a study guide. Under the editorship of V.G. Kukes, N.P. Bochkov. М.: GEOTARMedia, 2007. p. 248 (In Russ).
13. Stockmann C., Fassl B., Gaedigk R., Nkoy F., Uchida D.A., Monson S., et al. Fluticasone propionate pharmacogenetics: CYP3A4*22 polymorphism and pediatric asthma control. J Pediatr. 2013;162:1222-7, 1227.e1-2.
14. Stockmann C., Reilly C.A., Fassl B., Gaedigk R., Nkoy F., Stone B., et al. Effect of CYP3A5*3 on asthma control among children treated with inhaledbeclomethasone. J Allergy Clin Immunol. 2015 Aug;136(2):505-7.
15. Korablyova A.A. Optimization of broncial asthma pharmacotherapy in children on the grounds of pharmacoepidemiological and laboratorial clinic-based studies [Text]: extended abstract of Cand. of Sci. (Med.) Dissertation: 14.00.25, 14.00.09. А.А. Korablyova, academic adviser: L.E. Ziganshina, O.I. Pikusa; State Educational Institution of Further Professional Education «Kazan State Medical Academy», State Educational Institution of Higher Professional Education «Kazan State Medical University». Kazan, 2004. 18 p.: illustrated Bibliography: p. 17-18. (In Russ).
16. Tsoy A.N., Arkhipov V.V. Pharmacoepidemiological research into broncial asthma outpatient therapy in adults and adolescent patients in Moscow, 2003. Consilium Medicum. 2004;04:248-254. (In Russ).
17. Zastrozhina A.K., Sychyov D.A., Zaitseva S.V., Arkhipov V.V., Panfeo rova O.O., Kalyonov S.E., et al. Pharmaco epidemiological research in children with bronchial asthma in outpatient-polyclinic practice: retrospective study. Consilium Medicum. Pediatria. (Pril.). 2018;04:72-82. (In Russ)
18. Ilienkova N.A., Cherepanova I.V., Vokhmina T.A. Adherence problems in children with asthma. Pediatricheskaya Farmakologia. 2016;13(6):565-570. (In Russ).
19. Ненашева Н.М. Контроль бронхиальной астмы у подростков. Педиатрическая фармакология. 2008;5(3):98-103. [Nenasheva N.M. Bronchial asthma control in adolescent patients. Pediatricheskaya Farmakologia.. 2008;5(3):98-103.] (In Russ).
20. Baranov V.S., Khavinson V.Kh. Identification of genetic disposition to certain multifactorial conditions. Genetical Data Sheet. Eds. Khavinson V.Kh. St. Petersburg: Foliant, 2001. p. 48 (In Russ).
21. Nosikov V.V., Minushkina L.O., Ignatiev I.V. Genetic disposition to arterial hypertension, etc. Kardiovaskulyarnaya Terapia i Profilaktika. 2005;4(4) (pril.):241. (In Russ).
22. Juniper E.F., Gruffydd-Jones K, Ward S, Svensson K. Asthma Control Questionnaire in children: validation, measurement properties, interpretation. Eur Respir J. 2010;36:1410-6.
23. Nathan R.A., Sorkness C.A., Kosinski M., et al. Development of the asthma control test: a survey for assessing asthma control. J Allergy Clin Immunol. 2004;113:59-65.
24. Liu A.H., Zeiger R., Sorkness C., et al. Development and cross-sectional validation of the Childhood Asthma Control Test. J Allergy Clin Immunol. 2007;119:817-25.
25. Quaranta S., Chevalier D., Allorfe D., Lo-Guidice J.M., Migot-Nabias F., Kenani A., et al., Ethnic differences in the distribution of CYP3A5 gene polymorphisms. Xenobiotica. 2006;36:1191-200.
26. Lee S.J., Goldstein J.A. Functionally defective or altered CYP3A4 and CYP3A5 single nucleotide polymorphisms and their detection with genotyping tests. Pharmacogenomics. 2005 Jun;6(4):357–371. DOI: 10.1517/14622416.6.4.357.
27. Kuehl P., Zhang J., Lin Y., Lamba J., Assem M., Schurtz J., et al. Sequence diversity in CYP3A promoters and characterization og the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27:383-91.
Review
For citations:
Zastrozhina AK, Zaitseva SV, Grishina EA, Ryzhykova KA, Panfeorova OO, Kalenov SY, Soboleva OI, Sychyov DA, Zakharova IN. Effect of CYP3A5*3 polymorphism on anti-inflamatory therapy in children with bronchial asthma. Meditsinskiy sovet = Medical Council. 2019;(11):146-151. (In Russ.) https://doi.org/10.21518/2079-701X-2019-11-146-151