Preview

Meditsinskiy sovet = Medical Council

Advanced search

Intestinal microbiota as a key factor in the formation of immunity and tolerance. Probiotics capabilities

https://doi.org/10.21518/2079-701X-2020-10-92-100

Abstract

Introduction. The intestinal microbiome is an integral part of the health of its owner and performs several important functions: metabolic, coordinating, protective, epigenetic, which are closely interactive. In conditions of dysbiosis, disturbances of these functions contributes to different disorders.
The intestinal immune system closely interacts with the microbiota. It is represented by all cells: T- and B-lymphocytes, T-regulatory, dendritic cells, macrophages. Micropresentation of antigens occurs through M-cells located between enterocytes. Toll-like receptors that recognize bacterial patterns are presented on the epithelial membrane. Dendritic cells present these antigens to T-cells and direct a further adaptive immune response.
The immune system matures as a result of colonization of the intestine with microbiota, which is confirmed experimentally in gnotobiotic animals. Under physiological conditions, the immune system provides tolerance to its own microbiota through Tr-cells. Tolerogenic effects decrease in dysbiotic conditions, as a result, inflammation develops.

The state of the intestinal barrier. The intestinal barrier is maintained by microbiota, which stimulates the synthesis of mucin and claudine. In dysbiosis, permeability increases, and the immune system is attacked by microbes and their metabolites, which contributes to inflammation.
Dysbiosis predisposes to the development of inflammatory bowel diseases, colorectal cancer, metabolic syndrome and obesity, food allergies. In these diseases, the microbiota loses its diversity and richness and has a predominantly pro-inflammatory effect.

The effect of probiotics on the immune system. Probiotics, due to adhesion to the mucous layer, enhance barrier functions, interact with the immune system, affect dendritic cells, promoting the formation of Tr and inhibiting the activation of NF-kB. Commensal metabolites (butyrate) increase the involvement of Tr cells in the colon, exerting a tolerogenic effect.

Indications for the appointment of probiotics. Enterococcus faecium and Bifidobacterium longum have proven their activities similar to normal microbiota, and effectiveness in treatment of dysbiosis in children and adults.

About the Author

E. A. Kornienko
St Petersburg State Pediatric University
Russian Federation

Elena A. Kornienko, Dr. of Sci. (Med.), Professor of the Department of Children’s Diseases named after Professor I.M. Vorontsov of the Faculty of Postgraduate and Additional Professional Education

2, Litovskaya St., St Petersburg, 194100



References

1. Shi N., Li N., Duan X., Niu H. Interaction between the gut microbiome and mucosal immune system. Military Medical Research. 2017;4:59. doi: 10.1186/s40779-017-0122-9.

2. Clavel T., Lagkouvardos I., Gomes-Neto J.C., Ramer-Tait A.E. Deciphering interactions between the gut microbiota and the immune system via microbial cultivation and minimal microbiomes. Immunol. Rev. 2017;279(1):8–22. doi: 10.1111/imr.12578.

3. Rios D., Wood M.B., Li J., Chassaing B., Gewirtz A.T., Williams I.R. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 2016;9(4):907–916. doi: 10.1038/mi.2015.121.

4. Tilg H., Moschen A.R. Food, immunity, and the microbiome. Gastroenterology. 2015;148(6):1107–1119. doi: 10.1053/j.gastro.2014.12.036.

5. Bjerke G.A., Wilson R., Storro O., Oyen T., Johnsen R., Rudi K. Mother-tochild transmission of and multiple-strain colonisation by Bacteroides fragilis in a cohort of mothers and their children. Applied and Environmental Microbiology. 2011;77(23):8318–8324. doi: 10.1128/AEM.05293-11.

6. Penders J., Thijs C., Vink C., Stelma F.F., Snijders B., Kummeling I. et al. Factors Influencing the Composition of the Intestinal Microbiota in Early Infancy. Pediatrics. 2006;118(2):511–521. doi: 10.1542/peds.2005-2824.

7. Riedel C.U., Foata F., Philippe D., Adolfsson O., Eikmanns B.J., Blum S. AntiInflammatory Effects of Bifidobacteria by Inhibition of LPS-Induced NF-kappaB Activation. World Journal of Gastroenterology. 2006;12(23):3729–3735. doi: 10.3748/wjg.v12.i23.3729.

8. Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U.S.A. 2010;107(27):12204–12209. doi: 10.1073/pnas.0909122107.

9. Quévrain E., Maubert M.A., Michon C., Chain F., Marquant R., Talihades J. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2016;65:415–425. doi: 10.1136/gutjnl-2014-307649.

10. Vaishnava S., Behrendt C.L., Ismail A.S., Eckmann L., Hooper L.V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbe interface. Proc Natl Acad Sci USA. 2008;105(52):20858–20863. doi: 10.1073/pnas.0808723105.

11. Gaboriau-Routhiau V., Rakotobe S., Lécuyer E., Mulder I., Lan A., Bridonneau C. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–689. doi: 10.1016/j.immuni.2009.08.020.

12. Kim Y.S., Ho S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr Gastroenterol Rep. 2010;12(5):319–330. doi: 10.1007/s11894-010-0131-2.

13. Petersson J., Schreiber O., Velcich A., Roos S., Holm L., Phillipson M. et al. Importance and regulation of the colonic mucus barrier in a mouse model of colitis. Am J Physiol: Liver Physiol. 2011;300(2):327–333. doi: 10.1152/ajpgi.00422.2010.

14. Willemsen L.E.M., Koetsier M.A., Van Deventer S.J.H., Van Tol E.A.F. Short chain fatty acids stimulate epithelial mucin 2 expression through dierential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut. 2003;52(10):1442–1447. doi: 10.1136/gut.52.10.1442.

15. Koren O., Goodrich J.K., Cullender T.C., Spor A., Laitinen K., Bäckhed H.K. et al. Host Remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470–480. doi: 10.1016/j.cell.2012.07.008.

16. Kriss M., Hazleton K.Z., Nusbacher N.M., Martin C.G., Lozupone C.A. Low Diversity gut microbiota dysbiosis: Drivers, functional implications and recovery. Curr Opin Microbiol. 2018;44:34–40. doi: 10.1016/j.mib.2018.07.003.

17. Miyoshi J., Chang E.B. The gut microbiota and inflammatory bowel diseases. Transl Res. 2017;179:38–48. doi: 10.1016/j.trsl.2016.06.002.

18. Kostic A.D., Xavier R.J., Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–1499. doi: 10.1053/j.gastro.2014.02.009.

19. Williams J.E., Price W.J., Shafii B., Yahvah K.M., Bode L., McGuire M.A., McGuire M.K. Relationships among Microbial Communities, Maternal Cells, Oligosaccharides, and Macronutrients in Human Milk. J Hum Lact. 2017;33(3):540–551. doi: 10.1177/0890334417709433.

20. Ananthakrishnan A.N., Khalili H., Konijeti G.G., Higuchi L.M., de Silva P., Korzenik J.R. et al. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology. 2013;145(5):970–977. doi: 10.1053/j.gastro.2013.07.050.

21. Moss A., Nalankilli K. The association between diet and colorectal cancer risk: Moving beyond generalizations. Gastroenterology. 2017;152(8):18211823. doi: 10.1053/j.gastro.2017.04.025.

22. Gianfredi V., Salvatori T., Villarini M., Moretti M., Nucci D., Realdon S. Is dietary fibre truly protective against colon cancer? A systematic review and meta-analysis. Int J Food Sci Nutr. 2018;69(8):904–915. doi: 10.1080/09637486.2018.1446917.

23. Lazaridis N., Germanidis G. Current insights into the innate immune system dysfunction in irritable bowel syndrome. Ann Gastroenterol. 2018;31(2):171–187. doi: 10.20524/aog.2018.0229.

24. Lacy B.E., Mearin F., Chang L., Chey W.D., Lembo A.J., Simren M., Spiller R. Bowel Disorders. Gastroenterology. 2016;150(6):1393–1407. doi: 10.1053/j.gastro.2016.02.031.

25. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.

26. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Microbial ecology human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.

27. Collado M.C., Isolauri E., Laitinen K., Salminen S. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during pregnancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023–1030. doi: 10.3945/ajcn.2010.29877.

28. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi: 10.2337/db06-1491.

29. Castellazzi A.M., Valsecchi C., Caimmi S., Licari A., Marseglia A., Leoni M.C. et al. Probiotics and food allergy. Ital J Pediatr. 2013;39:47. doi: 10.1186/18247288-39-47.

30. Bjorksten B., Naaber P., Sepp E., Mikelsaar M. The intestinal microflora in allergic Estonian and Sweden 2-year-old children. Clin Exp Allergy. 1999;29(3):342–346. doi: 10.1046/j.1365-2222.1999.00560.x.

31. Nylund L., Satokari R., Nikkila J., Rajilić-Stojanović M., Kalliomäki M., Isolauri E. et al. Micriarray analysis reveals marked intestinal microbiota abberancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiology. 2013;13:12–23. doi: 10.1186/1471-2180-13-12.

32. Platonova N.B. Allergy to cow’s milk protein. Pediatr = Pediatrician. 2016;7(3):153–156. (In Russ.) doi: 10.17816/PED73153-156.

33. Rakoff-Naboum S., Paglimo J., Eslami-Varzanch F., Edberg S., Medzhinov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–241. doi: 10.1016/j.cell.2004.07.002.

34. Yan F., Polk D.B. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem. 2002;277(52):50959–50965. doi: 10.1074/jbc.M207050200.

35. Ouwehand A., Isolauri E., Salminen S. The role of intestinal microflora for development of the immune system in early childhood. Eur J Nutr. 2002;41(1):132–137. doi: 10.1007/s00394-002-1105-4.

36. Righy R., Kamm M.A., Knight S.C. et al. Pathogenic bacteria stimulate colonic dendritic cells to produce pro-inflammatory IL-12 while the response to probiotic bacteria is to produce anti-inflammatory IL-10. Gut. 2002;50:70.

37. Smits H.H., Engering A., van der Kleij D., Wierenga E., Kooyk Y., Kapsenberg M.L. et al. Selective probiotic bacteria induce IL-10producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol. 2005;115(6):12601267. doi: 10.1016/j.jaci.2005.03.036.

38. Houghteling P.D., Walker W.A. Why is initial bsterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gasteroenterol Nutr. 2015;60(3):294–307. doi: 10.1097/MPG.0000000000000597.

39. Braat H., van Den B.J., van Tol E., Hommes D., Peppelenbosch M., van Deventer S. et al. Lactobacillus rhamnosus induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic cell function. Am J Clin Nutr. 2004;80(6):1618–1625. doi: 10.1093/ajcn/80.6.1618.

40. Dalmasso G., Cortez F., Imbert V., Lagadec Peyron J.-F., Rampal P., Czerucka D., Groux H. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology. 2006;131(6):1812–1825. doi: 10.1053/j.gastro.2006.10.001.

41. Fang H., Elina T., Heikki A., Seppo S. Modulation of humoral immune response through probiotic intake. FEMS Immunol Med Microbiol. 2000;29(1):47–52. doi: 10.1111/j.1574-695X.2000.tb01504.x.

42. Savino F., Cordisco L., Tarasco V., Palumeri E., Calabrese R., Oggero R. et al. Lactobacillus reuteri DSM 17938 in infantile colic: a randomized doubleblind, placebo controlled trial. Pediatrics. 2010;126(3):526–533. doi: 10.1542/peds.2010-0433.

43. Bernet M.F., Brassart D., Neeser J.R., Servin A.L. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Environ Microbiol. 1993;59(12):41214128. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC195875.

44. Bednorz C., Guenther S., Oelgeschläger K., Kinnemann B., Pieper R., Hartmann S. et al. Feeding the probiotic Enterococcus faecium strain NCIMB 10415 to piglets specifically reduces the number of Escherichia coli pathotypes that adhere to the gut mucosa. Appl Environ Microbiol. 2013;79(24):7896–7904. doi: 10.1128/AEM.03138-13.

45. Silva A.M., Barbosa F.H., Duarte R., Vieira L.Q., Arantes R.M.E., Nicoli J.R. Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J Appl Microbiol. 2004;97(1):29–37. doi: 10.1111/j.1365-2672.2004.02265.x.

46. Miyauchi E., Ogita T., Miyamoto J., Kawamoto S., Morita H., Ohno H. et al. Bifidobacterium longum alleviates dextran sulfate sodium-induced colitis by suppressing IL-17A response: involvement of intestinal epithelial costimulatory molecules. PLoS One. 2013;8(11):79735. doi: 10.1371/journal.pone.0079735.

47. Scharek L., Guth J., Reiter K., Weyrauch K.D., Taras D., Schwerk P. et al. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Vet Immunol Immunopathol. 2005;105(1-2):151–161. doi: 10.1016/j.vetimm.2004.12.022.

48. Veir J.K., Knorr R., Cavadini C., Sherrill S.J., Benyacoub J., Satyaraj E., Lappin M.R. Effect of supplementation with Enterococcus faecium (SF68) on immune functions in cats. Vet Ther. 2007;8(4):229–238. Available at: https://pubmed.ncbi.nlm.nih.gov/18183541.

49. Line J.E., Svetoch E.A., Eruslanov B.V., Perelygin V.V., Mitsevich E.V., Mitsevich I.P. et al. Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrob Agents Chemother. 2008;52(3):1094–1100. doi: 10.1128/AAC.01569-06.


Review

For citations:


Kornienko EA. Intestinal microbiota as a key factor in the formation of immunity and tolerance. Probiotics capabilities. Meditsinskiy sovet = Medical Council. 2020;(10):92-100. (In Russ.) https://doi.org/10.21518/2079-701X-2020-10-92-100

Views: 1020


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)