Preview

Meditsinskiy sovet = Medical Council

Advanced search

Drug-induced hypocalcemia

https://doi.org/10.21518/2079-701X-2021-14-164-175

Abstract

Hypocalcemia (HCa) is one of the main water-electrolyte disturbances in clinical practice. An acute decrease in serum calcium levels can lead to seizures, ventricular arrhythmias, bronchospasm and laryngospasm. Chronic HCa can result in disorientation and confusion. To prevent these complications, the risk factors for low calcium levels must be carefully evaluated. One of these factors is drugs, in which case we are talking about drug-induced (DI) HCa. The list of drugs-inducers of DI HCa is quite extensive, but the leading role in this disorder is played by drugs for the treatment of osteoporosis, antineoplastic and antiepileptic drugs, as well as drugs for anti-tuberculosis therapy. When taking zoledronic acid, DI HCa is observed with a frequency of up to 39%. When taking imatinib, a targeted anticancer drug, a decrease in calcium levels was observed in 40% of cases. The pathophysiological mechanisms of DI HCa can be a decrease in bone resorption, a decrease in the concentration of vitamin D, inhibition of the action of parathyroid hormone and impaired calcium absorption. Risk factors in most cases of DI HCa are vitamin D deficiency and hypomagnesemia. An acute decrease in calcium levels leads to symptoms of neuromuscular excitability, abnormalities on the electrocardiogram (ECG) and electroencephalogram (EEG). The basis for the treatment of DI HCa is the drug withdrawal and the appointment of calcium. It is also necessary to prescribe vitamin D. The main methods of prevention of DI HCa are to determine the level of calcium and vitamin D before starting therapy with culprit medication, and to correct its level. It is also important to prescribe additional amounts of calcium and vitamin D during therapy with such drugs. Awareness of the attending physicians about the problem of DI HCa, a thorough assessment of its risk factors and the prophylactic administration of calcium and vitamin D preparations will help to effectively prevent those serious complications resulting from a decrease in calcium levels in clinical practice.

About the Authors

A. I. Listratov
Russian Medical Academy of Continuous Professional Education
Russian Federation

Alexander I. Listratov, 2nd Year Resident of the Department of Therapy and Polymorbid Pathology

2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993



O. D. Ostroumova
Russian Medical Academy of Continuous Professional Education; Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Olga D. Ostroumova, Dr. Sci. (Med.), Professor, Head of the Department of Therapy and Polymorbid Pathology, Professor of the Department of Clinical Pharmacology and Propedeutics of Internal Diseases

2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993

8, Bldg. 2, Trubetskaya St., Moscow, 119991



M. V. Klepikova
Russian Medical Academy of Continuous Professional Education
Russian Federation

Maria V. Klepikova, Cand. Sci. (Med.), Associate Professor, Department of Therapy and Polymorbid Pathology

2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993



E. V. Aleshkovich
Botkin City Clinical Hospital; 5, 2nd Botkinskiy
Russian Federation

Elena V. Aleshkovich, Cand. Sci. (Med.), Cardiologist, Head of the Cardiology Department for Patients with Acute Myocardial Infarction No. 4

5, 2nd Botkinskiy Proezd, Moscow, 125284



References

1. Kleeman C.R., Massry S.G., Coburn J.W. The Clinical Physiology of Calcium Homeostasis, Parathyroid Hormone, and Calcitonin. I. Calif Med. 1971;114(3):16–43. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1501893/.

2. Boden S.D., Kaplan F.S. Calcium Homeostasis. Orthop Clin North Am. 1990;21(1):31–42. https://doi.org/10.1016/s0030-5898(20)31563-7.

3. Murphy E., Williams G. Hypocalcaemia. Medicine (Baltimore). 2009;37(9):465–468. https://doi.org/10.1016/j.mpmed.2009.06.003.

4. Byrnes M.C., Huynh K., Helmer S.D., Stevens C., Dort J.M., Smith R.S. A Comparison of Corrected Serum Calcium Levels to Ionized Calcium Levels among Critically Ill Surgical Patients. Am J Surg. 2005;189(3):310–314. https://doi.org/10.1016/j.amjsurg.2004.11.017.

5. Liamis G., Milionis H.J., Elisaf M. A Review of Drug-Induced Hypocalcemia. J Bone Miner Metab. 2009;27(6):635–642. https://doi.org/10.1007/s00774-009-0119-x.

6. Cooper M.S., Gittoes N.J. Diagnosis and Management of Hypocalcaemia. BMJ. 2008;336(7656):1298–1302. https://doi.org/10.1136/bmj.39582.589433.BE.

7. Schafer A.L., Shoback D. 71. Hypocalcemia: Definition, Etiology, Pathogenesis, Diagnosis and Management. In: Rosen C.J. (ed.). Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 8th ed. Wiley and Sons; 2013, pp. 572–578. https://doi.org/10.1002/9781118453926.ch71.

8. Carroll R., Matfin G. Endocrine and Metabolic Emergencies: Hypocalcaemia. Ther Adv Endocrinol Metab. 2010;1(1):29–33. https://doi.org/10.1177/2042018810366494.

9. Kreutle V., Blum C., Meier C., Past M., Müller B., Schütz P., Borm K. Bisphosphonate Induced Hypocalcaemia – Report of Six Cases and Review of the Literature. Swiss Med Wkly. 2014;144:w13979. https://doi.org/10.4414/smw.2014.13979.

10. Conte P.F., Latreille J., Mauriac L., Calabresi F., Santos R., Campos D. et al. Delay in Progression of Bone Metastases in Breast Cancer Patients Treated with Intravenous Pamidronate: Results from a Multinational Randomized Controlled Trial. The Aredia Multinational Cooperative Group. J Clin Oncol. 1996;14(9):2552–2559. https://doi.org/10.1200/JCO.1996.14.9.2552.

11. Kohno N., Aogi K., Minami H., Nakamura S., Asaga T., Iino Y. et al. Zoledronic Acid Significantly Reduces Skeletal Complications Compared with Placebo in Japanese Women with Bone Metastases from Breast Cancer: A Randomized, Placebo-Controlled Trial. J Clin Oncol. 2005;23(15):3314–3321. https://doi.org/10.1200/JCO.2005.05.116.

12. Marx D., Rahimnejad Yazdi A., Papini M., Towler M. A Review of the Latest Insights into the Mechanism of Action of Strontium in Bone. Bone Rep. 2020;12:100273. https://doi.org/10.1016/j.bonr.2020.100273.

13. Autio K.A., Farooki A., Glezerman I.G., Chan A., Schneider C.W., Barr H.C. et al. Severe Hypocalcemia Associated With Denosumab in Metastatic Castration-Resistant Prostate Cancer: Risk Factors and Precautions for Treating Physicians. Clin Genitourin Cancer. 2015;13(4):e305–e309. https://doi.org/10.1016/j.clgc.2014.11.008.

14. Berardi R., Santoni M., Rinaldi S., Nunzi E., Smerilli A., Caramanti M. et al. Risk of Hyponatraemia in Cancer Patients Treated with Targeted Therapies: A Systematic Review and Meta-Analysis of Clinical Trials. PLoS ONE. 2016;11(5):e0152079. https://doi.org/10.1371/journal.pone.0152079.

15. Park D.S., Vassilopoulou Sellin R., Tu S. Estramustine-Related Hypocalcemia in Patients with Prostate Carcinoma and Osteoblastic Metastases. Urology. 2001;58(1):105. https://doi.org/10.1016/s0090-4295(01)01119-0.

16. Erbayat Altay E., Serdaroğlu A., Tümer L., Gücüyener K., Hasanoğlu A. Evaluation of Bone Mineral Metabolism in Children Receiving Carbamazepine and Valproic Acid. J Pediatr Endocrinol Metab. 2000;13(7):933–939. https://doi.org/10.1515/jpem.2000.13.7.933.

17. Burgner D., Scholvinck E., Coren M., Walters S. Chalk and Cheese: Symptomatic Hypocalcaemia during Paediatric Anti-Tuberculous Therapy. JInfect. 2004;49(2):169–171. https://doi.org/10.1016/j.jinf.2003.11.012.

18. Milman S., Epstein E.J. Proton Pump Inhibitor-Induced Hypocalcemic Seizure in a Patient with Hypoparathyroidism. Endocr Pract. 2011;17(1):104–107. https://doi.org/10.4158/EP10241.CR.

19. Yang Y.X. Chronic Proton Pump Inihibitor Therapy and Calcium Metabolism. Curr Gastroenterol Rep. 2012;14(6):473–479. https://doi.org/10.1007/s11894-012-0290-4.

20. Jacobson M.A., Gambertoglio J.G., Aweeka F.T., Causey D.M., Portale A.A. Foscarnet-Induced Hypocalcemia and Effects of Foscarnet on Calcium Metabolism. J Clin Endocrinol Metab. 1991;72(5):1130–1135. https://doi.org/10.1210/jcem-72-5-1130.

21. Oikonomou D., Laina A., Xydaki A., Christopoulos C. Steroid-Induced Hypocalcaemia with Tetany in a Patient with Hypoparathyroidism. BMJ Case Rep. 2014;bcr2014207562. https://doi.org/10.1136/bcr-2014-207562.

22. Fortenbery E.J., McDermott M.T., Duncan W.E. Effect of Theophylline on Calcium Metabolism and Circulating Vitamin D Metabolites. J Bone Miner Res. 1990;5(4):321–324. https://doi.org/10.1002/jbmr.5650050403.

23. Lee C.T., Chen H.C., Lai L.W., Yong K.C., Lien Y.H. Effects of Furosemide on Renal Calcium Handling. Am J Physiol Renal Physiol. 2007;293(4):F1231–F1237. https://doi.org/10.1152/ajprenal.00038.2007.

24. Schaefer B., Meindl E., Wagner S., Tilg H., Zoller H. Intravenous Iron Supplementation Therapy. Mol Aspects Med. 2020;75:100862. https://doi.org/10.1016/j.mam.2020.100862.

25. Frayha R.A., Tabbara Z., Berbir N. Acute Colchicine Poisoning Presenting as Symptomatic Hypocalcaemia. Br J Rheumatol. 1984;23(4):292–295. https://doi.org/10.1093/rheumatology/23.4.292.

26. Ohya K., Ogura H. The Effects of Colchicine or Vinblastine on the Blood Calcium Level in Rats. Eur J Pharmacol. 1993;248(2):111–119. https://doi.org/10.1016/0926-6917(93)90032-l.

27. Yusuf B., McPhedran P., Brewster U.C. Hypocalcemia in a Dialysis Patient Treated with Deferasirox for Iron Overload. Am J Kidney Dis. 2008;52(3):587–590. https://doi.org/10.1053/j.ajkd.2008.03.034.

28. Price D., Radke J., Albertson T. Hypocalcaemia after an Occult Calcium Channel Blocker Overdose: A Case Report and Literature Review. Basic Clin Pharmacol Toxicol. 2014;114(2):217–221. https://doi.org/10.1111/bcpt.12121.

29. Adams J.S., Sharma O.P., Diz M.M., Endres D.B. Ketoconazole Decreases the Serum 1,25-Dihydroxyvitamin D and Calcium Concentration in Sarcoidosis-Associated Hypercalcemia. J Clin Endocrinol Metab. 1990;70(4):1090–1095. https://doi.org/10.1210/jcem-70-4-1090.

30. Tisdale J.E., Miller D.A. Drug Induced Diseases: Prevention, Detection, and Management. 3rd ed. Bethesda, Md.: American Society of Health-System Pharmacists; 2018. 1400 р.

31. Zaloga G.P. Hypocalcemia in Critically Ill Patients. Crit Care Med. 1992;20(1):9. https://doi.org/10.1097/00003246-199202000-00014.

32. Kido Y., Okamura T., Tomikawa M., Yamamoto M., Shiraishi M., Okada Y. et al. Hypocalcemia Associated with 5-Fluorouracil and Low Dose Leucovorin in Patients with Advanced Colorectal or Gastric Carcinomas. Cancer. 1996;78(8):1794–1797. Available at: https://pubmed.ncbi.nlm.nih.gov/8859194/.

33. Yeung S.C.J., Escalante C.P. Oncologic Emergencies. Holland-Frei Cancer Medicine. 2017;1–21. https://doi.org/10.1002/9781119000822.hfcm141.

34. Zekri J.M., Robinson M.H., Woll P.J. Relative Hypocalcaemia and Muscle Cramps in Patients Receiving Imatinib for Gastrointestinal Stromal Tumour. Sarcoma. 2006;(1):48948. https://doi.org/10.1155/SRCM/2006/48948.

35. Carmeliet G., Van Cromphaut S., Daci E., Maes C., Bouillon R. Disorders of Calcium Homeostasis. Best Pract Res Clin Endocrinol Metab. 2003;17(4):529–546. https://doi.org/10.1016/j.beem.2003.08.001.

36. Brown A.J., Dusso A., Slatopolsky E. Vitamin D. Am J Physiol. 1999;277(2):F157–F175. https://doi.org/10.1152/ajprenal.1999.277.2.F157.

37. Russell R.G., Xia Z., Dunford J.E., Oppermann U., Kwaasi A., Philippa A.H. et al. Bisphosphonates: An Update on Mechanisms of Action and How These Relate to Clinical Efficacy. Ann N Y Acad Sci. 2007;1117:209–257. https://doi.org/10.1196/annals.1402.089.

38. Ho J.W. Bisphosphonate Stimulation of Osteoblasts and Osteoblastic Metastasis as a Mechanism of Hypocalcaemia. Med Hypotheses. 2012;78(3):377–379. https://doi.org/10.1016/j.mehy.2011.12.002.

39. Lacey D.L., Boyle W.J., Simonet W.S., Kostenuik P.J., Dougall W.C., Sullivan J.K. et al. Bench to Bedside: Elucidation of the OPG-RANK-RANKL Pathway and the Development of Denosumab. Nat Rev Drug Discov. 2012;11(5):401–419. https://doi.org/10.1038/nrd3705.

40. Webster R., Sheriff S., Faroqui R., Siddiqui F., Hawse J.R., Amlal H. Klotho/ Fibroblast Growth Factor 23- and PTH-Independent Estrogen Receptor-αMediated Direct Downregulation of NaPi-IIa by Estrogen in the Mouse Kidney. Am J Physiol Renal Physiol. 2016;311(2):F249–F259. https://doi.org/10.1152/ajprenal.00542.2015.

41. Reyes E.L., Talley R.W. The Hypocalcemic Effects of Actinomycin F and Mithramycin. Henry Ford Hosp Med J. 1970;18(2):115–120. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol18/iss2/6/.

42. Ali F.E., Al-Bustan M.A., Al-Busairi W.A., Al-Mulla F.A. Loss of Seizure Control due to Anticonvulsant-Induced Hypocalcemia. Ann Pharmacother. 2004;38(6):1002–1005. https://doi.org/10.1345/aph.1D467.

43. Davies P.D., Brown R.C., Church H.A., Woodhead J.S. The Effect of AntiTuberculosis Chemotherapy on Vitamin D and Calcium Metabolism. Tubercle. 1987;68(4):261–266. https://doi.org/10.1016/0041-3879(87)90066-3.

44. Subbiah V., Tayek J.A. Tetany Secondary to the Use of a Proton-Pump Inhibitor. Ann Intern Med. 2002;137(3):219. https://doi.org/10.7326/0003-4819-137-3-200208060-00024.

45. Tuukkanen J., Väänänen H.K. Omeprazole, a Specific Inhibitor of H+-K+-ATPase, Inhibits Bone Resorption in vitro. Calcif Tissue Int. 1986;38(2):123–125. https://doi.org/10.1007/BF02556841.

46. Kulak C.A., Borba V.Z., Bilezikian J.P., Silvado C.E., Paola L., Boguszewski C.L. Bone Mineral Density and Serum Levels of 25 OH Vitamin D in Chronic Users of Antiepileptic Drugs. Arq Neuropsiquiatr. 2004;62(4):940–948. https://doi.org/10.1590/s0004-282x2004000600003.

47. Rose B.D. Diuretics. Kidney Int. 1991;39(2):336–352. https://doi.org/10.1038/ki.1991.43.

48. Coe F.L., Canterbury J.M., Firpo J.J., Reiss E. Evidence for Secondary Hyperparathyroidism in Idiopathic Hypercalciuria. J Clin Invest. 1973;52(1):134–142. https://doi.org/10.1172/JCI107156.

49. Gabow P.A., Hanson T.J., Popovtzer M.M., Schrier R.W. Furosemide-Induced Reduction in Ionized Calcium in Hypoparathyroid Patients. Ann Intern Med. 1977;86(5):579–581. https://doi.org/10.7326/0003-4819-86-5-579.

50. Arany I., Safirstein R.L. Cisplatin Nephrotoxicity. Semin Nephrol. 2003;23(5):460–464. https://doi.org/10.1016/s0270-9295(03)00089-5.

51. Okada N., Kawazoe K., Teraoka K., Kujime T., Abe M., Shinohara Y., Minakuchi K. Identification of the Risk Factors Associated with Hypocalcemia Induced by Denosumab. Biol Pharm Bull. 2013;36(10):1622–1626. https://doi.org/10.1248/bpb.b13-00496.

52. Ishikawa K., Nagai T., Tsuchiya K., Oshita Y., Kuroda T., Ito H. et al. High Bone Turnover Status as a Risk Factor in Symptomatic Hypocalcemia Following Denosumab Treatment in a Male Patient with Osteoporosis. Clin Interv Aging. 2018;13:1929–1934. https://doi.org/10.2147/CIA.S180614.

53. Ostroumova O.D., Kochetkov A.I., Klepikova M.V. Drug-Induced Electrolyte Disorder. Part 2. Drug-Induced Hypomagnesemia. RMZh = RMJ. 2020;(12):36–48. (In Russ.) Available at: https://www.rmj.ru/articles/kardiologiya/Lekarstvenno-inducirovannyy_deficit_elektrolitov_Chasty_2_Lekarstvenno-inducirovannaya_gipomagniemiya/.

54. Mohebbi M.R., Rosenkrans K.A., Jung M.J. Chvostek’s and Trousseau’s Signs in a Case of Hypoparathyroidism. J Clin Diagn Res. 2013;7(5):970. https://doi.org/10.7860/JCDR/2013/5592.2992.

55. Cecchi E., Grossi F., Rossi M., Giglioli C., De Feo M.L. Severe Hypocalcemia and Life-Threatening Ventricular Arrhytmias: Case Report and Proposal of a Diagnostic and Therapeutic Algorithm. Clin Cases Miner Bone Metab. 2015;12(3):265–268. https://doi.org/10.11138/ccmbm/2015.12.3.265.

56. Kudoh C., Tanaka S., Marusaki S., Takahashi N., Miyazaki Y., Yoshioka N. et al. Hypocalcemic Cardiomyopathy in a Patient with Idiopathic Hypoparathyroidism. Intern Med. 1992;31(4):561–568. https://doi.org/10.2169/internalmedicine.31.561.

57. Suzuki T., Ikeda U., Fujikawa H., Saito K., Shimada K. Hypocalcemic Heart Failure: A Reversible Form of Heart Muscle Disease. Clin Cardiol. 1998;21(3):227–228. https://doi.org/10.1002/clc.4960210319.

58. Wong C.K., Lau C.P., Cheng C.H., Leung W.H., Freedman B. Hypocalcemic Myocardial Dysfunction: Short- and Long-Term Improvement with Calcium Replacement. Am Heart J. 1990;120(2):381–386. https://doi.org/10.1016/0002-8703(90)90083-a.

59. Bilezikian J.P., Khan A., Potts J.T., Brandi M.L., Clarke B.L., Shoback D. et al. Hypoparathyroidism in the Adult: Epidemiology, Diagnosis, Pathophysiology, Target-Organ Involvement, Treatment, and Challenges for Future Research. J Bone Miner Res. 2011;26(10):2317–2337. https://doi.org/10.1002/jbmr.483.

60. Illum F., Dupont E. Prevalences of CT-Detected Calcification in the Basal Ganglia in Idiopathic Hypoparathyroidism and Pseudohypoparathyroidism. Neuroradiology. 1985;27(1):32–37. https://doi.org/10.1007/BF00342514.

61. Velasco P.J., Manshadi M., Breen K., Lippmann S. Psychiatric Aspects of Parathyroid Disease. Psychosomatics. 1999;40(6):486–490. https://doi.org/10.1016/s0033-3182(99)71186-2.

62. Ayuk J., Matthews T., Tayebjee M., Gittoes N.J. A Blind Panic. Lancet. 2001;357(9264):1262. https://doi.org/10.1016/S0140-6736(00)04408-1.

63. Belkhouribchia J., Bravenboer B., Meuwissen M., Velkeniers B. Osteomalacia with Low Alkaline Phosphatase: A Not So Rare Condition with Important Consequences. BMJ Case Rep. 2016;bcr2015212827. https://doi.org/10.1136/bcr-2015-212827.

64. Shoback D. Clinical Practice. Hypoparathyroidism. N Engl J Med. 2008;359(4):391–403. https://doi.org/10.1056/NEJMcp0803050.

65. Rallidis L.S., Gregoropoulos P.P., Papasteriadis E.G. A Case of Severe Hypocalcaemia Mimicking Myocardial Infarction. Int J Cardiol. 1997;61(1):89–91. https://doi.org/10.1016/s0167-5273(97)00124-1.

66. Nardone R., Brigo F., Trinka E. Acute Symptomatic Seizures Caused by Electrolyte Disturbances. J Clin Neurol. 2016;12(1):21–33. https://doi.org/10.3988/jcn.2016.12.1.21.

67. Naranjo C.A., Busto U., Sellers E.M., Sandor P., Ruiz I., Roberts E.A. et al. A Method for Estimating the Probability of Adverse Drug Reactions. Clin Pharmacol Ther. 1981;30(2):239–245. https://doi.org/10.1038/clpt.1981.154.

68. Sychev D.A., Ostroumova O.D., Pereverzev A.P., Kochetkov A.I., Ostroumova T.M., Klepikova M.V. et al. Drug-Induced Diseases: Approaches to Diagnosis, Correction and Prevention. Pharmacovigilance. Farmateka. 2020;(6):113–126. (In Russ.) https://doi.org/10.18565/pharmateca.2020.6.113-126

69. Bushinsky D.A., Monk R.D. Electrolyte Quintet: Calcium. Lancet. 1998;352(9124):306–311. https://doi.org/10.1016/s0140-6736(97)12331-5.

70. Dickerson R.N. Treatment of Hypocalcemia in Critical Illness – part 1. Nutrition. 2007;23(4):358–361. https://doi.org/10.1016/j.nut.2007.01.011.

71. Harvey J.A., Zobitz M.M., Pak C.Y. Dose Dependency of Calcium Absorption: A Comparison of Calcium Carbonate and Calcium Citrate. J Bone Miner Res. 1988;3(3):253–258. https://doi.org/10.1002/jbmr.5650030303.

72. Eryol N.K., Colak R., Ozdoğru I., Tanriverdi F., Unal S., Topsakal R. et al. Effects of Calcium Treatment on QT Interval and QT Dispersion in Hypocalcemia. Am J Cardiol. 2003;91(6):750–752. https://doi.org/10.1016/s0002-9149(02)03423-9.

73. Dedov I.I., Melnichenko G.A., Mokrysheva N.G., Andreeva E.N., Beltsevich D.G., Eremkina A.K. et al. Hypoparathyroidism: Clinical Guidelines. Moscow; 2019. 86 p. (In Russ.) Available at: https://www.endocrincentr.ru/sites/default/files/specialists/science/clinic-recomendations/kr_hypo_09.12.2019.pdf.

74. Wilkinson R.J., Llewelyn M., Toossi Z., Patel P., Pasvol G., Lalvaniet A. et al. Influence of Vitamin D Deficiency and Vitamin D Receptor Polymorphisms on Tuberculosis among Gujarati Asians in west London: A Case-Control Study. Lancet. 2000;355(9204):618–621. https://doi.org/10.1016/S0140-6736(99)02301-6.

75. Aksoy D., Güveli B.T., Ak P.D., Sarı H., Ataklı D., Arpaci B. Effects of Oxcarbazepine and Levetiracetam on Calcium, Ionized Calcium, and 25-OH Vitamin-D3 Levels in Patients with Epilepsy. Clin Psychopharmacol Neurosci. 2016;14(1):74–78. https://doi.org/10.9758/cpn.2016.14.1.74.


Review

For citations:


Listratov AI, Ostroumova OD, Klepikova MV, Aleshkovich EV. Drug-induced hypocalcemia. Meditsinskiy sovet = Medical Council. 2021;(14):164-175. (In Russ.) https://doi.org/10.21518/2079-701X-2021-14-164-175

Views: 640


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)