The effectiveness of combination of 7% hypertonic saline and 0.1% natrii hyaluronas in patients with chronic obstructive pulmonary disease who have suffered a new coronavirus infection
https://doi.org/10.21518/2079-701X-2021-16-85-91
Abstract
Introduction. New coronavirus infection (COVID-19) contributes to the aggravation of respiratory symptoms in patients with COPD, including affecting the intensity and nature of cough. Hypertonic solution (HS) has a positive effect on the rheological properties of sputum and mucociliary clearance. However, there are no studies in the available literature on the use of HS in patients who have undergone COVID-19.
Goal. To evaluate the effect of the combination of 7% hypertonic saline and 0.1% natrii hyaluronas on the intensity and productive nature of cough in patients with COPD who have undergone a new coronavirus infection and the safety of its use in this cohort of patients.
Materials and methods. 50 patients with severe COPD in remission who suffered a new coronavirus infection were examined. The rehabilitation stage of treatment was carried out in the conditions of the pulmonology department. From the moment of receiving the last negative PCR result for SARS-CoV-2 to admission to the hospital for rehabilitation, it took from 2 to 3 weeks. The duration of follow-up of patients was 10 days. The patients were divided into two groups: group 1 (n = 25) – patients who received combination of 7% hypertonic saline and 0.1% natrii hyaluronas 7% by inhalation through a nebulizer; group 2 (n = 25) – patients who did not receive combination of 7% hypertonic saline and 0.1% natrii hyaluronas. The severity of cough was assessed (cough severity scale; shortness of breath, cough and sputum scale), clinical and biochemical blood tests, ECG, spirometry.
Results. In patients treated with combination of 7% hypertonic saline and 0.1% natrii hyaluronas, a significant decrease in the severity of cough, the amount of sputum was revealed. The tendency to reduce shortness of breath and improve the quality of life is determined. No serious adverse events were detected when using the drug.
Conclusions. The use of the combination of 7% hypertonic saline and 0.1% natrii hyaluronas in patients with COPD who have suffered a new coronavirus infection at the rehabilitation stage leads to a decrease in the intensity of cough and improved sputum discharge, which helps to reduce the severity of shortness of breath and improve the quality of life. The use of the drug is safe and does not lead to clinically significant adverse events.
About the Authors
O. N. TitovaRussian Federation
Olga N. Titova, Dr. Sci. (Med.), Professor, Director of Research Institute of Pulmonology
6–8, Lev Tolstoy St., St Petersburg, 197022, Russia
N. A. Kuzubova
Russian Federation
Natalia A. Kuzubova, Dr. Sci. (Med.), Deputy Director of Research Institute of Pulmonology
6–8, Lev Tolstoy St., St Petersburg, 197022, Russia
D. B. Skliarova
Russian Federation
Daria B. Skliarova, Cand. Sci. (Med.), Senior Researcher of Research Institute of Pulmonology
6–8, Lev Tolstoy St., St Petersburg, 197022, Russia
A. L. Aleksandrov
Russian Federation
Albert L. Aleksandrov, Dr. Sci. (Med.), Professor, Head of the Department of Clinical and Experimental Pathology of the Respiratory System, Research Institute of Pulmonology
6–8, Lev Tolstoy St., St Petersburg, 197022, Russia
N. V. Egorova
Russian Federation
Natalia V. Egorova, Researcher of Research Institute of Pulmonology
6–8, Lev Tolstoy St., St Petersburg, 197022, Russia
References
1. Szalontai K., Gémes N., Furák J., Varga T., Neuperger P., Balog J.Á. et al. Chronic Obstructive Pulmonary Disease: Epidemiology, Biomarkers, and Paving the Way to Lung Cancer. J Clin Med. 2021;10(13):2889. https://doi.org/10.3390/jcm10132889.
2. Wilkinson T.M., Hurst J.R., Perera W.R., Willks M., Donaldson G.C., Wedzicha J.A. Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest. 2006;129(2):317–324. https://doi.org/10.1378/chest.129.2.317.
3. George S.N., Garcha D.S., Mackay A.J., Patel A.R.C., Singh R., Sapsford R.J. et al. Human rhinovirus infection during naturally occurring COPD exacerbations. Eur Respir J. 2014;44(1):87–96. https://doi.org/10.1183/09031936.00223113.
4. Bafadhel M., McKenna S., Terry S., Mistry V., Reid C., Haldar P. et al. Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med. 2011;184(6):662–671. https://doi.org/10.1164/rccm.201104-0597oc.
5. Smith J.C., Sausville E.L., Girish V., Yuan M.L., Vasudevan A., John K.M., Sheltzer J.M. Cigarette Smoke Exposure and Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev Cell. 2020;53(5):514. e3–529.e3. https://doi.org/10.1016/j.devcel.2020.05.012.
6. Kasahara Y., Tuder R.M., Cool C.D., Lynch D.A., Flores S.C., Voelkel N.F. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema. Am J Respir Crit Care Med. 2001;163(3 Pt. 1):737–744. https://doi.org/10.1164/ajrccm.163.3.2002117.
7. Minakata Y., Nakanishi M., Hirano T., Matsunaga K., Yamagata T., Ichinose M. Microvascular hyperpermeability in COPD airways. Thorax. 2005;60(10):882. https://doi.org/10.1136/thx.2005.045765.
8. Vaidyula V.R., Criner G.J., Grabianowski C., Rao A.K. Circulating tissue factor procoagulant activity is elevated in stable moderate to severe chronic obstructive pulmonary disease. Thromb Res. 2009;124(3):259–261. https://doi.org/10.1016/j.thromres.2008.12.030.
9. Halpin D.M.G., Singh D., Hadfield R.M. Inhaled corticosteroids and COVID- 19: a systematic review and clinical perspective. Eur Respir J. 2020;55(5):2001009. https://doi.org/10.1183/13993003.01009-2020.
10. Bartoletti M., Giannella M., Scudeller L., Tedeschi S., Rinaldi M., Bussini L. et al. Predictors of severe respiratory failure in hospitalized patients with SARSCoV-2 infection: development and validation of a prediction model (PREDI-CO study). Clin Microbiol Infect. 2020;26(11):1545–1553. https://doi.org/10.1016/j.cmi.2020.08.003.
11. Palmieri L., Vanacore N., Donfrancesco C., Lo Noce C., Canevelli M., Punzo O. et al. Clinical Characteristics of Hospitalized Individuals Dying With COVID-19 by Age Group in Italy. J Gerontol A Biol Sci Med Sci. 2020;75(9):1796–1800. https://doi.org/10.1093/gerona/glaa146.
12. He Y., Xie M., Zhao J., Liu X. Clinical Characteristics and Outcomes of Patients with Severe COVID-19 and Chronic Obstructive Pulmonary Disease (COPD). Med Sci Monit. 2020;26:e927212. https://doi.org/10.12659/msm.927212.
13. Petrova D.V., Rudakova D.M., Reutskaya E.M., Petaeva E.M., Sosnova O.L., Michel S.D. et al. The use of inhaled hypertonic saline and hyaluronic acid in patients with chronic obstructive pulmonary disease. Prakticheskaya pulmonologiya = Russian Pulmonology. 2016;(4):65–69. (In Russ.) Available at: http://www.atmosphere-ph.ru/modules/Magazines/articles/pulmo/pp_4_2016_65.pdf.
14. Simonova O.I., Gorinova Yu.V. New form of hypertonic solution for nebulization therapy. Voprosy sovremennoy pediatrii = Current Pediatrics. 2016;15(6):631–634. (In Russ.) https://doi.org/10.15690/vsp.v15i6.1662.
15. Simonova O.I., Gorinova Yu.V., Bakradze M.D. Efficiency of hypertonic solution inhalation in children with bronchitis and bronchiolitis. Voprosy sovremennoy pediatrii = Current Pediatrics. 2014;13(4):33–39. (In Russ.) https://doi.org/10.15690/vsp.v13i4.1082.
16. Krasovsky S.A., Amelina E.L., Chernyak A.V., Kondratieva E.I., Gorinova Yu.V., Zonenko O.G. et al. Observational study of the use of 7% sodium chloride solution combined with 0,1% hyaluronic acid in therapy of adults with cystic fibrosis. Meditsinskiy sovet = Medical Council. 2018;(21):72–77. https://doi.org/10.21518/2079-701X-2018-21-72-77.
17. Graeber S.Y., Zhou-Suckow Z., Schatterny J., Hirtz S., Boucher R.C., Mall M.A. Hypertonic saline is effective in the prevention and treatment of mucus obstruction, but not airway inflammation, in mice with chronic obstructive lung disease. Am J Respir Cell Mol Biol. 2013;49(3):410–417. https://doi.org/10.1165/rcmb.2013-0050oc.
18. Robinson M., Hemming A.L., Regnis J.A., Wong A.G., Bailey D.L., Bautovich G.J. et al. Effect of increasing doses of hypertonic saline on mucociliary clearance in patients with cystic fibrosis. Thorax. 1997;52(10):900–903. https://doi.org/10.1136/thx.52.10.900.
19. Henke M.O., Ratjen F. Mucolytics in cystic fibrosis. Paediatr Respir Rev. 2007;8(1):24–29. https://doi.org/10.1016/j.prrv.2007.02.009.
20. King M., Dasgupta B., Tomkiewicz R.P., Brown N.E. Rheology of cystic fibrosis sputum after in vitro treatment with hypertonic saline alone and in combination with recombinant human deoxyribonuclease I. Am J Respir Crit Care Med. 1997;156(1):173–177. https://doi.org/10.1164/ajrccm.156.1.9512074.
21. Rodwell L.T., Anderson S.D. Airway responsiveness to hyperosmolar saline challenge in cystic fibrosis: a pilot study. Pediatr Pulmonol. 1996;21(5):282–289. https://doi.org/10.1002/(sici)1099-0496(199605)21:5%3C282::aidppul3%3E3.0.co;2-p.
22. Donaldson S.H., Bennett W.D., Zeman K.L., Knowles M.R., Tarran R., Boucher R.C. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med. 2006;354(3):241–250. https://doi.org/10.1056/nejmoa043891.
23. Goralski J.L., Wu D., Thelin W.R., Boucher R.C., Button B. The in vitro effect of nebulised hypertonic saline on human bronchial epithelium. Eur Respir J. 2018;51(5):1702652. https://doi.org/10.1183/13993003.02652-2017.
24. Smyth A.R., Bell S.C., Bojcin S., Bryon M., Duff A., Flume P. et al. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J Cyst Fibros. 2014;13(1 Suppl.):S23–S42. https://doi.org/10.1016/j.jcf.2014.03.010.
25. Gao P., Gibson P.G., Zhang J., He X., Hao Y., Li P., Liu H. The safety of sputum induction in adults with acute exacerbation of COPD. Clin Respir J. 2013;7(1):101–109. https://doi.org/10.1111/j.1752-699x.2012.00291.x.
26. Allegra L., Della Patrona S., Petrigni G. Hyaluronic acid: perspectives in lung diseases. Handb Exp Pharmacol. 2012;(207):385–401. https://doi.org/10.1007/978-3-642-23056-1_17.
27. Máiz Carro L., Martínez-García MA. Use of Hyaluronic Acid (HA) in Chronic Airway Diseases. Cells. 2020;9(10):2210. https://doi.org/10.3390/cells9102210.
28. Buonpensiero P., De Gregorio F., Sepe A., Di Pasqua A., Ferri P., Siano M. et al. Hyaluronic acid improves “pleasantness” and tolerability of nebulized hypertonic saline in a cohort of patients with cystic fibrosis. Adv Ther. 2010;27(11):870–878. https://doi.org/10.1007/s12325-010-0076-8.
29. Turino G.M., Cantor J.O. Hyaluronan in respiratory injury and repair. Am J Respir Crit Care Med. 2003;167(9):1169–1175. https://doi.org/10.1164/rccm.200205-449pp.
30. Cantor J.O., Shteyngart B., Cerreta J.M., Liu M. The effect of hyaluronan on elastic fiber injury in vitro and elastase-induced airspace enlargement in vivo. Proc Soc Exp Biol Med. 2000;225(1):65–71. https://doi.org/10.1111/j.1525-1373.2000.22508.x.
31. Papakonstantinou E., Bonovolias I., Roth M., Tamm M., Schumann D., Baty F. et al. Serum levels of hyaluronic acid are associated with COPD severity and predict survival. Eur Respir J. 2019;53(3):1801183. https://doi.org/10.1183/13993003.01183-2018.
32. Papakonstantinou E., Roth M., Klagas I., Karakiulakis G., Tamm M., Stolz D. COPD exacerbations are associated with proinflammatory degradation of hyaluronic acid. Chest. 2015;148(6):1497–1507. https://doi.org/10.1378/chest.15-0153.
33. Cantor J.O., Cerreta J.M., Ochoa M., Ma S., Chow T., Grunig G., Turino G.M. Aerosolized hyaluronan limits airspace enlargement in a mouse model of cigarette smoke-induced pulmonary emphysema. Exp Lung Res. 2005;31(4):417–430. https://doi.org/10.1080/01902140590918669.
34. Cantor J.O., Cerreta J.M., Ochoa M., Ma S., Liu M., Turino G.M. Therapeutic effects of hyaluronan on smoke-induced elastic fiber injury: Does delayed treatment affect efficacy? Lung. 2011;189(1):51–56. https://doi.org/10.1007/s00408-010-9271-2.
35. Cantor J.O., Cerreta J.M., Armand G., Turino G.M. Aerosolized hyaluronic acid decreases alveolar injury induced by human neutrophil elastase. Proc Soc Exp Biol Med. 1998;217(4):471–475. https://doi.org/10.3181/00379727-217-44260.
36. Avdeev S.N., Adamyan L.V., Alekseeva E.I., Bagnenko S.F., Baranov A.A., Baranova N.N. et al. Interim Guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 11 (07.05.2021). Мoscow; 2021. 225 p. (In Russ.) Available at: https://стопкоронавирус.рф/ai/doc/872/attach/Bmr_COVID-19_compressed.pdf.
37. Chuchalin A.G., Avdeev S.N., Aisanov Z.R., Belevskiy A.S., Leshchenko I.V., Ovcharenko S.I., Shmelev E.I. Chronic obstructive pulmonary disease: clinical recommendations. Moscow; 2021. (In Russ.) Available at: https://cr.minzdrav.gov.ru/schema/603_2
Review
For citations:
Titova ON, Kuzubova NA, Skliarova DB, Aleksandrov AL, Egorova NV. The effectiveness of combination of 7% hypertonic saline and 0.1% natrii hyaluronas in patients with chronic obstructive pulmonary disease who have suffered a new coronavirus infection. Meditsinskiy sovet = Medical Council. 2021;(16):85-91. (In Russ.) https://doi.org/10.21518/2079-701X-2021-16-85-91