Analysis of the antibiotic consumption on the backdrop of the COVID-19 pandemic: hospital level
https://doi.org/10.21518/2079-701X-2021-16-118-128
Abstract
Introduction. According to available data, the frequency of prescribing antibacterial drugs to patients hospitalized with COVID-19 is many times higher than the level of bacterial infection recorded in them. This trend may make an extremely negative contribution to the problem of antibiotic resistance in the future, which makes it important to monitor and study the consumption of antibiotics in this category of patients.
Aim of the study. To estimate the change in the consumption of antibacterial drugs in patients hospitalized with COVID-19 in a multidisciplinary hospital compared with the consumption in the pre-pandemic period, and to conduct a subsequent analysis of the detected changes.
Materials and methods. This retrospective study, reviewed the medical records of patients hospitalized with COVID-19 in the Moscow city hospital No. 4 in the period from April 27 to December 31, 2020, as well as medical records of patients hospitalized in the same medical institution for the same period of 2019. Results of the use of antibacterial drugs were obtained. They were evaluated using the ATC/DDD methodology and then subjected to further analysis.
Results. Total consumption increased from 31,576 DDD/100 bed-days to 220,609 DDD/100 bed-days among the patients hospitalized with COVID-19. The level of consumption of macrolides increased most significantly – from 0.024 DDD/100 bed-days to 147.898 DDD/100 bed-days. The level of consumption of penicillins increased from 2,346 DDD/100 bed-days to 15,892 DDD/100 beddays, cephalosporins – from 11.78 DDD/100 bed-days to 19,107 DDD/100 bed-days, fluoroquinolones – from 10,276 DDD/100 beddays to 25,535 DDD/100 bed-days.
Conclusion. The consumption of antibiotics has increased dramatically on the backdrop of the COVID-19 pandemic. Based on the data of the frequency of bacterial complications in patients with COVID-19 (no more than 8%), a more rational approach to antibacterial therapy in this group of patients is needed to reduce the potential deterioration of the problem of antibiotic resistance.
About the Authors
K. I. KarnoukhRussian Federation
Konstantin I. Karnoukh, Postgraduate Student of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases
8, Bldg. 2, Trubetskaya St., Moscow, 119991, Russia
N. B. Lazareva
Russian Federation
Natalia B. Lazareva, Dr. Sci. (Med.), Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases
8, Bldg. 2, Trubetskaya St., Moscow, 119991, Russia
References
1. Castro-Sánchez E., Moore L.S., Husson F., Holmes A.H. What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England. BMC Infect Dis. 2016;16(1):465. https://doi.org/10.1186/s12879-016-1810-x.
2. Yakovlev S.V., Suvorova M.P., Beloborodov V.B., Basin E.E., Eliseev E.V., Kovelenov S.V. et al. Multicentre Study of the Prevalence and Clinical Value of Hospital-Acquired Infections in Emergency Hospitals of Russia: ERGINI Study Team. Antibiotiki i himioterapiya = Antibiotics and Chemotherapy. 2016;61(5–6):32–42. (In Russ.) Available at: https://www.antibiotics-chemotherapy.ru/jour/article/view/669.
3. Rachina S.A, Belkova U.A, Kozlov R.S, Anikeev A.S., Tolpygo A.V., Burasova E.G. et al. Point Prevalence Multicenter Survey of Antimicrobial Utilization in Russian Hospitals: the Results of GLOBAL-PPS 2017. Antibiotiki i Khimioterapiya = Antibiotics and Chemotherapy. 2019;64(5–6):54–63. (In Russ.) Available at: https://www.antibiotics-chemotherapy.ru/jour/article/view/143.
4. Hand K. Antibiotic stewardship. Clin Med (Lond). 2013;13(5):499–503. https://doi.org/10.7861/clinmedicine.13-5-499.
5. Bell B.G., Schellevis F., Stobberingh E., Goossens H., Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14:13. https://doi.org/10.1186/1471-2334-14-13.
6. Tammer I., Geginat G., Lange S., Kropf S., Lodes U., Lippert H. et al. Antibiotikaverbrauch und Resistenzentwicklung in der Chirurgie. Zentralbl Chir. 2016;141(01):53–61. (In Germ.) https://doi.org/10.1055/s-0033-1351087.
7. Arepyeva M.A., Kolbin A.S., Sidorenko S.V., Lawson R., Kurylev A.A., Mukhina N.V. et al. A mathematical model for predicting the development of bacterial resistance based on the relationship between the level of antimicrobial resistance and the volume of antibiotic consumption. J Glob Antimicrob Resist. 2017;8:148–156. https://doi.org/10.1016/j.jgar.2016.11.010.
8. Schuts E.C., Hulscher M.E.J.L., Mouton J.W., Verduin C.M., Cohen Stuart J.W.T., Overdiek H.W.P.M. et al. Current evidence on hospital antimicrobial stewardship objectives: a systematic review and meta-analysis. Lancet Infect Dis. 2016;16(7):847–856. https://doi.org/10.1016/S1473-3099(16)00065-7.
9. Dik J.W., Vemer P., Friedrich A.W., Hendrix R., Lo-Ten-Foe J.R., Sinha B., Postma M.J. Financial evaluations of antibiotic stewardship programs – a systematic review. Front Microbiol. 2015;6:317. https://doi.org/10.3389/fmicb.2015.00317.
10. Davey P., Peden C., Charani E., Marwick C., Michie S. Time for action – Improving the design and reporting of behaviour change interventions for antimicrobial stewardship in hospitals: Early findings from a systematic review. Int J Antimicrob Agents. 2015;45(3):203–212. https://doi.org/10.1016/j.ijantimicag.2014.11.014.
11. Nathwani D., Varghese D., Stephens J., Ansari W., Martin S., Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob Resist Infect Control. 2019;8:35. https://doi.org/10.1186/s13756-019-0471-0.
12. Yakovlev S.V., Briko N.I., Sidorenko S.V., Protsenko D.N., Beloborodov V.B., Brusina E.B et al. SATC Program (Strategy for Anrimicrobial Therapy Control) for in-patient care medical care. Moscow: Pero; 2018. p. 156. (In Russ.) Available at: http://nasci.ru/?id=2880.
13. Klein E.Y., Monteforte B., Gupta A., Jiang W., May L., Hsieh Y.H., Dugas A. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. Influenza Other Respir Viruses. 2016;10(5):394–403. https://doi.org/10.1111/irv.12398.
14. Rawson T.M., Moore L.S.P., Zhu N., Ranganathan N., Skolimowska K., Gilchrist M. et al. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. Clin Infect Dis. 2020;71(9):2459–2468. https://doi.org/10.1093/cid/ciaa530.
15. Langford B.J., So M., Raybardhan S., Leung V., Westwood D., MacFadden D.R. et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. 2020;26(12):1622–1629. https://doi.org/10.1016/j.cmi.2020.07.016.
16. Huttner B.D., Catho G., Pano-Pardo J.R., Pulcini C., Schouten J. COVID-19: don’t neglect antimicrobial stewardship principles! Clin Microbiol Infect. 2020;26(7):808–810. https://doi.org/10.1016/j.cmi.2020.04.024.
17. Ziganshina L.E., Magsumova D.R., Kurilev A.A., Pikuza O.I., Gerasimov V.B., Javorskij A.N. ATC/DDD – classification system in pharmacoepidemiological research. Katchestvennaja klinichaskaja praktika = Good Clinical Practice. 2004;(1):28–33. (In Russ.) Available at: https://www.clinvest.ru/jour/article/view/388.
18. Hartzema A.G., Porta M.S., Tilson H.H. Introduction to pharmacoepidemiology. Drug Intell Clin Pharm. 1987;21(9):739–740. https://doi.org/10.1177/106002808702100915.
19. Angus D.C. Optimizing the Trade-off between Learning and Doing in a Pandemic. JAMA. 2020;323(19):1895–1896. https://doi.org/10.1001/jama.2020.4984.
20. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.
21. Kanoh S., Rubin B.K. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev. 2010;23(3):590–615. https://doi.org/10.1128/CMR.00078-09.
22. Cramer C.L., Patterson A., Alchakaki A., Soubani A.O. Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician. Postgrad Med. 2017;129(5):493–499. https://doi.org/10.1080/00325481.2017.1285677.
23. Parnham M.J., Haber V.E., Giamarellos-Bourboulis E.J., Perletti G., Verleden G.M., Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–245. https://doi.org/10.1016/j.pharmthera.2014.03.003.
24. Madrid P.B., Panchal R.G., Warren T.K., Shurtleff A.C., Endsley A.N., Green C.E. et al. Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect Dis. 2015;1(7):317–326. https://doi.org/10.1021/acsinfecdis.5b00030.
25. Gielen V., Johnston S.L., Edwards M.R. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646–654. https://doi.org/10.1183/09031936.00095809.
26. Sultana J., Cutroneo P.M., Crisafulli S., Puglisi G., Caramori G., Trifirò G. Azithromycin in COVID-19 Patients: Pharmacological Mechanism, Clinical Evidence and Prescribing Guidelines. Drug Saf. 2020;43(8):691–698. https://doi.org/10.1007/s40264-020-00976-7.
27. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M. et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. https://doi.org/10.1016/j.ijantimicag.2020.105949.
28. Rosenberg E.S., Dufort E.M., Udo T., Wilberschied L.A., Kumar J., Tesoriero J. et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA. 2020;323(24):2493–2502. https://doi.org/10.1001/jama.2020.8630.
29. Kuzmenkov A.Y., Trushin I.V., Avramenko A.A., Edelstein M.V., Dekhnich A.V., Kozlov R.S. AMRmap: an online platform for monitoring antimibiotic resistance. Klinicheskaja microbiologija i antimikrobnaja himioterapija = Clinical Microbiology and Antimicrobial Chemotherapy. 2017;19(2):84–90. (In Russ.) Available at: https://cmac-journal.ru/publication/2017/2/cmac-2017-t19-n2-p084/cmac-2017-t19-n2-p084.pdf.
30. Grau S., Hernández S., Echeverría-Esnal D., Almendral A., Ferrer R., Horcajada J.P. et al. Antimicrobial Consumption among 66 Acute Care Hospitals in Catalonia: Impact of the COVID-19 Pandemic. Antibiotics (Basel). 2021;10(8):943. https://doi.org/10.3390/antibiotics10080943.
31. Ponce-Alonso M., Sáez de la Fuente J., Rincón-Carlavilla A., Moreno-Nunez P., Pintor R., Cobo J. et al. Impact of the coronavirus disease 2019 (COVID-19) pandemic on nosocomial Clostridioides difficile infection. Infect Control Hosp Epidemiol. 2021;42(4):406–410. https://doi.org/10.1017/ice.2020.454.
32. Mustafa Z.U., Salman M., Aldeyab M., Kow C.S., Hasan S.S. Antimicrobial consumption among hospitalized patients with COVID-19 in Pakistan. SN Compr Clin Med. 2021;1–5. https://doi.org/10.1007/s42399-021-00966-5.
33. Kubin C.J., Loo A.S., Cheng J., Nelson B., Mehta M., Mazur S. et al. Antimicrobial stewardship perspectives from a New York City hospital during the COVID-19 pandemic: challenges and opportunities. Am J Health Syst Pharm. 2021;78(8):743–750. https://doi.org/10.1093/ajhp/zxaa419.
Review
For citations:
Karnoukh KI, Lazareva NB. Analysis of the antibiotic consumption on the backdrop of the COVID-19 pandemic: hospital level. Meditsinskiy sovet = Medical Council. 2021;(16):118-128. (In Russ.) https://doi.org/10.21518/2079-701X-2021-16-118-128