Preview

Meditsinskiy sovet = Medical Council

Advanced search

Treatment of non-demented vascular cognitive disorders

https://doi.org/10.21518/2079-701X-2021-19-57-65

Abstract

Currently, cognitive impairment is a determining factor in the decline in adaptation in the elderly. Damage to the cerebral vessels is one of the most common causes of the development of cognitive deficits. Patients with severe cognitive impairments are not easily treatable, require outside help, and have significant limitations in daily activities. In most cases, this stage is preceded by a period of mild cognitive impairment. As a rule, mild cognitive impairments often remain undiagnosed, since they do not cause restrictions in daily activities for a long time and are detected only thanks to highly specific neuropsychological tests. But it is precisely the timely diagnosis and treatment of cognitive impairment without dementia, that make it possible to achieve longterm remission of the disease, to delay the onset of pronounced cognitive deficit. Among the correction methods, non-drug methods and pharmacological therapy are distinguished. Of no small importance is the impact on vascular risk factors such as arterial hypertension, diabetes mellitus, hyperlipidemia, smoking, alcohol abuse, etc. Nutrition planning, dosed exercise and cognitive training are the most common non-pharmacological strategies for correcting cognitive impairment. Pharmacological treatment includes anticholinesterase and neurometabolic drugs, as well as drugs aimed at correcting risk factors. A growing number of researchers agree that complex therapy, including lifestyle modification and the use of pharmacotherapy, is preferable. The article discusses the most commonly used methods of treating non-demented cognitive impairments, presents the results of large randomized clinical trials devoted to this problem, presents our own experience of both exclusively non-drug effects on patients and the use of complex treatment using a neurometabolic drug.

About the Authors

M. S. Novikova
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Maria S. Novikova, Postgraduate Student of the Department of Nervous Diseases and Neurosurgery, Sklifosovsky Institute of Clinical Medicine

8, Bldg. 2, Trubetskaya St., Moscow, 119991, Russia



V. V. Zakharov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Vladimir V. Zakharov, Dr. Sci. (Med.), Professor of the Department of Nervous Diseases and Neurosurgery, Sklifosovsky Institute of Clinical Medicine

8, Bldg. 2, Trubetskaya St., Moscow, 119991, Russia



References

1. Van der Flier W.M., Skoog I., Schneider J.A., Pantoni L., Mok V., Chen C.L.H., Scheltens P. Vascular cognitive impairment. Nat Rev Dis Primers. 2018;4:18003. https://doi.org/10.1038/nrdp.2018.3.

2. Yakhno N.N., Preobrazhenskaya I.S., Zakharov V.V., Stepkina D.A., Lokshina A.B., Mkhitaryan E.A. et al. Prevalence of cognitive impairments in neurological diseases: Analysis of the activities of a specialized outpatient reception office. Nevrologiya, neyropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2012;4(2):30–35. (In Russ.) https://doi.org/10.14412/2074-2711-2012-378.

3. Skrobot O.A., O’Brien J., Black S., Chen C., DeCarli C., Erkinjuntti T. et al. The Vascular Impairment of Cognition Classification Consensus Study. Alzheimers Dement. 2017;13(6):624–633. https://doi.org/10.1016/j.jalz.2016.10.007.

4. Peila R., White L.R., Masaki K., Petrovitch H., Launer L.J. Reducing the risk of dementia: efficacy of long-term treatment of hypertension. Stroke. 2006;37(5):1165–1170. https://doi.org/10.1161/01.STR.0000217653.01615.93.

5. Williamson J.D., Pajewski N.M., Auchus A.P., Bryan R.N., Chelune G., Cheung A.K. et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019;321(6):553–561. https://doi.org/10.1001/jama.2018.21442.

6. Stewart R.A. H., Held C., Krug-Gourley S., Waterworth D., Stebbins A., Chiswell K. et al. Cardiovascular and Lifestyle Risk Factors and Cognitive Function in Patients with Stable Coronary Heart Disease. J Am Heart Assoc. 2019;8(7):e010641. https://doi.org/10.1161/JAHA.118.010641.

7. Kirkpatrick A.C., Stoner J.A., Dale G.L., Rabadi M., Prodan C.I. Higher Coated-Platelet Levels in Acute Stroke are Associated with Lower Cognitive Scores at Three Months Post Infarction. J Stroke Cerebrovasc Dis. 2019;28(9):2398–2406. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.033.

8. Zimmerman B., Kundu P., Rooney W.D., Raber J. The Effect of High Fat Diet on Cerebrovascular Health and Pathology: A Species Comparative Review. Molecules. 2021;26(11):3406. https://doi.org/10.3390/molecules26113406.

9. Estruch R., Ros E., Salas-Salvadó J., Covas M.I., Corella D., Arós F. et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34. https://doi.org/10.1056/NEJMoa1800389.

10. Gómez-Gómez M.E., Zapico S.C. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int J Mol Sci. 2019;20(11):2842. https://doi.org/10.3390/ijms20112842.

11. Faraco G., Hochrainer K., Segarra S.G., Schaeffer S., Santisteban M.M., Menon A. et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature. 2019;574(7780):686–690. https://doi.org/10.1038/s41586-019-1688-z.

12. Buie J.J., Watson L.S., Smith C.J., Sims-Robinson C. Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiol Dis. 2019;132:104580. https://doi.org/10.1016/j.nbd.2019.104580.

13. Martínez-Lapiscina E.H., Clavero P., Toledo E., Estruch R., Salas-Salvadó J., San Julián B. et al. Mediterranean diet improves cognition: the PREDIMEDNAVARRA randomised trial. J Neurol Neurosurg Psychiatry. 2013;84(12):1318–1325. https://doi.org/10.1136/jnnp-2012-304792.

14. Rusek M., Pluta R., Ułamek-Kozioł M., Czuczwar S.J. Ketogenic Diet in Alzheimer’s Disease. Int J Mol Sci. 2019;20(16):3892. https://doi.org/10.3390/ijms20163892.

15. Berendsen A.M., Kang J.H., Feskens E.J. M., de Groot C.P. G. M., Grodstein F., van de Rest O. Association of Long-Term Adherence to the MIND Diet with Cognitive Function and Cognitive Decline in American Women. J Nutr Health Aging. 2018;22(2):222–229. https://doi.org/10.1007/s12603-017-0909-0.

16. Munoz-Garcia M.I., Toledo E., Razquin C., Dominguez L.J., Maragarone D., Martinez-Gonzalez J., Martinez-Gonzalez M.A. “A priori” Dietary Patterns and Cognitive Function in the SUN Project. Neuroepidemiology. 2020;54(1):45–57. https://doi.org/10.1159/000502608.

17. Liu-Ambrose T., Best J.R., Davis J.C., Eng J.J., Lee P.E., Jacova C. et al. Aerobic exercise and vascular cognitive impairment: A randomized controlled trial. Neurology. 2016;87(20):2082–2090. https://doi.org/10.1212/WNL.0000000000003332.

18. Tomoto T., Liu J., Tseng B.Y., Pasha E.P., Cardim D., Tarumi T. et al. One-Year Aerobic Exercise Reduced Carotid Arterial Stiffness and Increased Cerebral Blood Flow in Amnestic Mild Cognitive Impairment. J Alzheimers Dis. 2021;80(2):841–853. https://doi.org/10.3233/JAD-201456.

19. Rodakowski J., Saghafi E., Butters M.A., Skidmore E.R. Non-pharmacological interventions for adults with mild cognitive impairment and early stage dementia: An updated scoping review. Mol Aspects Med. 2015;43–44: 38–53. https://doi.org/10.1016/j.mam.2015.06.003.

20. Johnston M.V. Plasticity in the developing brain: implications for rehabilitation. Dev Disabil Res Rev. 2009;15(2):94–101. https://doi.org/10.1002/ddrr.64.

21. Tang Y., Xing Y., Zhu Z., He Y., Li F., Yang J. et al. The effects of 7-week cognitive training in patients with vascular cognitive impairment, no dementia (the Cog-VACCINE study): A randomized controlled trial. Alzheimers Dement. 2019;15(5):605–614. https://doi.org/10.1016/j.jalz.2019.01.009.

22. Prokopenko S.V., Bezdenezhnykh A.F., Mozheyko E.Yu., Zubritskaya E.M. A comparative clinical study of the efficacy of computer cognitive training in patients with post-stroke cognitive impairments. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(8–2):32–36. (In Russ.) https://doi.org/10.17116/jnevro20171178232-36.

23. Liu Y.W., Chen Z.H., Luo J., Yin M.Y., Li L.L., Yang Y.D. et al. Explore combined use of transcranial direct current stimulation and cognitive training on executive function after stroke. J Rehabil Med. 2021;53(3):jrm00162. https://doi.org/10.2340/16501977-2807.

24. Guo W., Zang M., Klich S., Kawczyński A., Smoter M., Wang B. Effect of Combined Physical and Cognitive Interventions on Executive Functions in OLDER Adults: A Meta-Analysis of Outcomes. Int J Environ Res Public Health. 2020;17(17):6166. https://doi.org/10.3390/ijerph17176166.

25. Kalaria R.N., Akinyemi R., Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim Biophys Acta. 2016;1862(5):915–925. https://doi.org/10.1016/j.bbadis.2016.01.015.

26. Yeh T.T., Chang K.C., Wu C.Y. The Active Ingredient of Cognitive Restoration: A Multicenter Randomized Controlled Trial of Sequential Combination of Aerobic Exercise and Computer-Based Cognitive Training in Stroke Survivors with Cognitive Decline. Arch Phys Med Rehabil. 2019;100(5):821–827. https://doi.org/10.1016/j.apmr.2018.12.020.

27. Ngandu T., Lehtisalo J., Solomon A., Levälahti E., Ahtiluoto S., Antikainen R. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–2263. https://doi.org/10.1016/S0140-6736(15)60461-5.

28. Levi Marpillat N., Macquin-Mavier I., Tropeano A.I., Bachoud-Levi A.C., Maison P. Antihypertensive classes, cognitive decline and incidence of dementia: a network meta-analysis. J Hypertens. 2013;31(6):1073–1082. https://doi.org/10.1097/HJH.0b013e3283603f53.

29. Ostroumova O.D., Shikh E.V., Rebrova E.V., Abrosimov A.G. Effects of some commonly used drugs on cognitive functions. Nevrologiya, neyropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2018;10(2):95–101. (In Russ.) https://doi.org/10.14412/2074-2711-2018-1-95-101.

30. Ostroumova T.M., Parfenov V.A., Ostroumova O.D. Hypertension and cognitive impairment: the standpoint of evidence-based medicine. Nevrologiya, neyropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2017;9(4):70–76. (In Russ.) https://doi.org/10.14412/2074-2711-2017-4-70-76.

31. Korsunskaya L.L., Vlasenko S.V., Davidova A.A., Larina N.V., Golubova T.F., Muratova L.R. The effect of cellex on regenerative processes in cerebral parenchymal hemorrhage under experimental condition. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(7):73–77. (In Russ.) https://doi.org/10.17116/jnevro20181187173.

32. Kamchatnov P.R., Izmailov I.A., Sokolov M.A. Results of Cerebrovascular Diseases Treatment with Cellex. Nervnye bolezni = Nervous Diseases. 2018;(1):26–31. (In Russ.) https://doi.org/10.24411/2226-0757-2018-11994.

33. Abusueva B.A., Evzel’man M. A., Kamchatnov P.R., Umarova Kh.Ya. Efficacy of Cellex in patients with mild cognitive impairment. Nervnomyshechnyye bolezni = Neuromuscular Diseases. 2016;6(3):17–23. (In Russ.) https://doi.org/10.17650/2222-8721-2016-6-3-17-23.


Review

For citations:


Novikova MS, Zakharov VV. Treatment of non-demented vascular cognitive disorders. Meditsinskiy sovet = Medical Council. 2021;(19):57-65. (In Russ.) https://doi.org/10.21518/2079-701X-2021-19-57-65

Views: 565


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)