Preview

Meditsinskiy sovet = Medical Council

Advanced search

A modern approach to the management of patients with post-COVID syndrome

https://doi.org/10.21518/2079-701X-2022-16-6-50-58

About the Author

article Editorial

Russian Federation


References

1. Schumann A., de la Cruz F., Köhler S., Brotte L., Bär K.-J. The Influence of Heart Rate Variability Biofeedback on Cardiac Regulation and Functional Brain Connectivity. Front Neurosci. 2021;15:691988. https://doi.org/10.3389/fnins.2021.691988.

2. Livingston G., Huntley J., Sommerlad A., Ames D., Ballard C., Banerjee S. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet commission. Lancet. 2020;396(10248):413–446. https://doi.org/10.1016/s0140-6736(20)30367-6.

3. Willekens B., Perrotta G., Cras P., Cools N. Into the moment: Does mindfulness affect biological pathways in multiple sclerosis? Front Behav Neurosci. 2018;12:103. https://doi.org/10.3389/fnbeh.2018.00103.

4. Ben-Ari Y. Neuro-archaeology: pre-symptomatic architecture and signature of neurological disorders. Trends Neurosci. 2008;31(12):626–636. https://doi.org/10.1016/j.tins.2008.09.002.

5. Alexandrova E.A., Parshina E.V., Borodacheva I.V., Suslov A.G., Beliakov K.M., Yulin V.S., Fomin S.V. Possibilities of daytime anxolytics in the correction of residual neurological manifestations of COVID-19. Meditsinskiy Sovet. 2021;(12):50–60. (In Russ.) https://doi.org/10.21518/2079-701X-2021-12-50-60.

6. Soriano J.B., Murthy S., Marshall J.C., Relan P., Diaz J.V. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2021;S1473-3099(21)00703-9. https://doi.org/10.1016/s1473-3099(21)00703-9.

7. Taquet M., Geddes J.R., Husain M., Luciano S., Harrison P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. The Lancet Psychiatry. 2021;8(5):416–427. https://doi.org/10.1016/s2215-0366(21)00084-5.

8. Seppälä T., Palva E., Mattila M.J., Korttila K., Shrotriya R.C. Tofisopam, a novel 3,4-benzodiazepine: multiple-dose effects on psychomotor skills and memory. Comparison with diazepam and interactions with ethanol. Psychopharmacology. 1980;69(2):209–218. https://doi.org/10.1007/bf00427652.

9. Szegó J., Somogyi M., Papp E. Excerpts from the clinical-pharmacologic and clinical studies of Grandaxin. Acta Pharm Hung. 1993;63(2):91–98. Available at: https://pubmed.ncbi.nlm.nih.gov/8100114/

10. Miskowiak K.W., Johnsen S., Sattler S.M., Nielsen S., Kunalan K., Rungby J. et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur Neuropsychopharmacol. 2021;46:39–48. https://doi.org/10.1016/j.euroneuro.2021.03.019.

11. Del Brutto O.H., Wu S., Mera R.M., Costa A.F., Recalde B.Y., Issa N.P. Cognitive decline among individuals with history of mild symptomatic SARS-CoV-2 infection: A longitudinal prospective study nested to a population cohort. Eur J Neurol. 2021;28(10):3245–3253. https://doi.org/10.1111/ene.14775.

12. Liu Y.H., Wang Y.R., Wang Q.H., Chen Y., Chen X., Li Y. et al. Post-infection cognitive impairments in a cohort of elderly patients with COVID-19. Mol Neurodegener. 2021;16(1):48. https://doi.org/10.1186/s13024-021-00469-w.

13. Mattioli F., Stampatori C., Righetti F., Sala E., Tomasi C., De Palma G. Neurological and cognitive sequelae of Covid-19: a four month follow-up. J Neurol. 2021;268(12):4422–4428. https://doi.org/10.1007/s00415-021-10579-6.

14. Lan X., Zhang M., Yang W., Zheng Z., Wu Y., Zeng Q. et al. Effect of treadmill exercise on 5-HT, 5-HT1A receptor and brain derived neurophic factor in rats after permanent middle cerebral artery occlusion. Neurol Sci. 2014;35(5):761–766. https://doi.org/10.1007/s10072-013-1599-y.

15. Duman R.S., Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35(1):47–56. https://doi.org/10.1016/j.tins.2011.11.004.

16. Smulevich A.B. Depression in somatic and mental illness. Moscow: MIA; 2015. 640 p. (In Russ.)

17. Mosolov S.N., Kostyukova E.G., Gorodnichev A.V., Timofeev I.V., Ladyzhenskiy M.YA., Serditov O.V. linical efficacy and tolerability of venlafaxine (velaxin) in the treatment of moderate and severe depression. Trudnyj Pacient. 2007;(3):1172– 1178. Available at: https://t-pacient.ru/articles/6214.

18. Fearon C., Fasano A. Parkinson’s disease and the COVID-19 Pandemic. J Parkinsons Dis. 2021;11(2):431–444. https://doi.org/10.3233/jpd-202320.

19. Cilia R., Bonvegna S., Straccia G., Andreasi N.G., Elia A.E., Romito L.M. et al. Effects of COVID-19 on parkinson’s disease clinical features: A communitybased case-control study. Mov Disord. 2020;35(8):1287–1292. https://doi.org/10.1002/mds.28170.

20. Idrees D., Kumar V. SARS-CoV-2 spike protein interactions with amyloidogenic proteins: Potential clues to neurodegeneration. Biochem Biophys Res Commun. 2021;554:94–98. https://doi.org/10.1016/j.bbrc.2021.03.100.

21. Faber I., Brandão P.R.P., Menegatti F., de Carvalho Bispo D.D., Maluf F.B., Cardoso F. Coronavirus Disease 2019 and Parkinsonism: A Non-postencephalitic Case. Mov Disord. 2020;35(10):1721–1722. https://doi.org/10.1002/mds.28277.

22. Beauchamp L.C., Finkelstein D.I., Bush A.I., Evans A.H., Barnham K.J. Parkinsonism as a Third Wave of the COVID-19 Pandemic? J Parkinsons Dis. 2020;10(4):1343–1353. https://doi.org/10.3233/jpd-202211.

23. Whone A.L., Watts R.L., Davis M., Reske S., Reske S., Nahmias C. et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol. 2003;54(1):93–101. https://doi.org/10.1002/ana.10609.

24. Tompson D.J., Vearer D. Steady-state pharmacokinetic properties of a 24-hour prolonged-release formulation of ropinirole: results of two randomized studies in patients with Parkinson’s disease. Clin Ther. 2007;29(12):2654–2666. https://doi.org/10.1016/j.clinthera.2007.12.010.

25. Watts R.L., Lyons K.E., Pahwa R., Sethi K., Stern M., Hauser R.A. et al. Onset of dyskinesia with adjunct ropinirole prolonged-release or additional levodopa in early Parkinson’s disease. Mov Disord. 2010;25(7):858–866. https://doi.org/10.1002/mds.22890.

26. Hersh B.P., Earl N.L., Hauser R.A., Stacy M. Early treatment benefits of ropinirole prolonged release in Parkinson’s disease patients with motor fluctuations. Mov Disord. 2010;25(7):927–931. https://doi.org/10.1002/mds.23040.

27. Stocchi F., Hersh B.P., Scott B.L., Nausieda P.A., Giorgi L. Ropinirole 24-hour prolonged release and ropinirole immediate release in early Parkinson’s disease: a randomized, double-blind, non-inferiority crossover study. Curr Med Res Opin. 2008;24(10):2883–2895. https://doi.org/10.1185/03007990802387130.

28. Pahwa R., Stacy M.A., Factor S.A., Lyons K.E., Stocchi F., Hersh B.P. et al. Ropinirole 24-hour prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology. 2007;68(14):1108–1115. https://doi.org/10.1212/01.wnl.0000258660.74391.c1.

29. Berardelli A., Wenning G.K., Antonini A., Berg D., Bloem B.R., Bonifati V. et al. EFNS/MDS-ES/ENS [corrected] recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol. 2013;20(1):16–34. https://doi.org/10.1111/ene.12022.

30. Fotuhi M., Mian A., Meysami S., Raji C.A. Neurobiology of COVID-19. J Alzheimers Dis. 2020;76(1):3–19. https://doi.org/10.3233/jad-200581.

31. Tkacheva O.N., Yakhno N.N., Neznanov N.G., Levin O.S., Gusev E.I., Martynov M.Yu. et al. Cognitive disorders in elderly and senile age: clinical recommendations. 2020. Moscow; 2020. 317 p. (In Russ.)


Review

For citations:


A modern approach to the management of patients with post-COVID syndrome. Meditsinskiy sovet = Medical Council. 2022;(6):50-58. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-6-50-58

Views: 423


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)