Preview

Meditsinskiy sovet = Medical Council

Advanced search

Medical thermovision: possibilities and prospects of the method

https://doi.org/10.21518/2079-701X-2022-16-6-256-263

Abstract

Infectious and inflammatory conditions, injuries and malignant neoplasms may raise body temperature, and ischemia may reduce it. Temperature is an important physical and biological quantity and a key human health indicator. It serves as a main indicator in screening of most medical pathologies of both surgical and therapeutic and gynecological profiles. Medical thermovision is a modern diagnostic remote non-invasive informative technique without radiation exposure and contraindications, which is based on the registration of natural thermal radiation emitted by human bodies in the invisible infrared range of the electromagnetic spectrum. As physiological changes precede structural changes observed during classical medical imaging, infrared thermography allows for identification of pathological conditions and neoplasms long before these conditions are confirmed by other diagnostic techniques. Separately, it is necessary to point out that the technique is also an effective way to detect viral diseases. Using medical thermography, the course of the disease may be monitored over time: from screening and diagnosis to follow up of treatment and rehabilitation. The technique is widely used in many fields of medicine and is available for multiple uses. In the article, the current domestic and foreign literature on the use and possibilities of the medical thermography technique in different fields of medicine are analysed. Possibilities and prospects for medical thermovision in the realities of modern medical practice are assessed. 

About the Authors

A. M. Morozov
Tver State Medical University
Russian Federation

Cand. Sci. (Med.), Associate Professor of the Department of General Surgery, 

4, Sovetskaya St., Tver, 170100



S. V. Zhukov
Tver State Medical University
Russian Federation

Dr. Sci. (Med.), Head of the Department of Emergency Medicine and Disaster Medicine, 

4, Sovetskaya St., Tver, 170100



T. V. Sorokovikova
Tver State Medical University
Russian Federation

Cand. Sci. (Med.), Assistant of the Department of Neurology, Rehabilitation and Neurosurgery, 

4, Sovetskaya St., Tver, 170100



V. N. Ilkaeva
Tver State Medical University
Russian Federation

Resident of the 1st Year of Cardiology Specialization, 

4, Sovetskaya St., Tver, 170100



M. A. Belyak
Tver State Medical University
Russian Federation

4th Year Student of the Medicine Faculty, 

4, Sovetskaya St., Tver, 170100



L. A. Pototskaya
Tver State Medical University
Russian Federation

4th Year Student of the Medicine Faculty,

4, Sovetskaya St., Tver, 170100



J. E. Minakova
Tver State Medical University
Russian Federation

5th Year Student of the Medicine Faculty, 

4, Sovetskaya St., Tver, 170100



References

1. Cardone D., Pinti P., Merla A. Thermal Infrared Imaging-Based Computational Psychophysiology for Psychometrics. Comput Math Methods Med. 2015;984353. https://doi.org/10.1155/2015/984353.

2. Nazıroğlu M., Braidy N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front Physiol. 2017;8:1040. https://doi.org/10.3389/fphys.2017.01040.

3. Machoy M., Szyszka-Sommerfeld L., Rahnama M., Koprowski R., Wilczyński S., Woźniak K. Diagnosis of Temporomandibular Disorders Using Thermovision Imaging. Pain Res Manag. 2020;5481365. https://doi.org/10.1155/2020/5481365.

4. Barbosa J.S., Amorim A., Arruda M., Medeiros G., Freitas A., Vieira L. et al. Infrared thermography assessment of patients with temporomandibular disorders. Dentomaxillofac Radiol. 2020;49(4):20190392. https://doi.org/10.1259/dmfr.20190392.

5. Damião C.P., Montero J.R.G., Moran M.B.H., de Oliveira Marçal E. Silva Carvalho M.E., de Farias C.G., Brito I.B. et al. Application of thermography in the diagnostic investigation of thyroid nodules. Endocr J. 2021;68(5):573–581. https://doi.org/10.1507/endocrj.EJ20-0541.

6. Ilo A., Romsi P., Mäkelä J. Infrared Thermography and Vascular Disorders in Diabetic Feet. J Diabetes Sci Technol. 2020;14(1):28–36. https://doi.org/10.1177/1932296819871270.

7. Nergård S., Mercer J.B., de Weerd L. Impact on Abdominal Skin Perfusion following Abdominoplasty. Plast Reconstr Surg Glob Open. 2021;9(1):e3343. https://doi.org/10.1097/GOX.0000000000003343.

8. Wang L.T., Cleveland R.H., Binder W., Zwerdling R.G., Stamoulis C., Ptak T. et al. Similarity of chest X-ray and thermal imaging of focal pneumonia: a randomised proof of concept study at a large urban teaching hospital. BMJ Open. 2018;8(1):e017964. https://doi.org/10.1136/bmjopen-2017-017964.

9. Morozov A.M., Mokhov E.M., Kadykov V.A., Panova A.V. Medical thermography: capabilities and perspectives. Kazan Medical Journal. 2018;99(2): 264–270. (In Russ.) https://doi.org/10.17816/KMJ2018-264.

10. Urakov A.L., Urakova N.A., Urakova T.V. Infrared breast self-monitoring. International Journal of Applied and Basic Research. 2016;(7–2):217–220. (In Russ.) Available at: https://applied-research.ru/ru/article/view?id=9796.

11. Mambou S.J., Maresova P., Krejcar O., Selamat A., Kuca K. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model. Sensors (Basel). 2018;18(9):2799. https://doi.org/10.3390/s18092799.

12. Saygin D., Highland K.B., Tonelli A.R. Microvascular involvement in systemic sclerosis and systemic lupus erythematosus. Microcirculation. 2019;26(3):e12440. https://doi.org/10.1111/micc.12440.

13. Thatcher J.E., Squiers J.J., Kanick S.C., King D.R., Lu Y., Wang Y. et al. Imaging Techniques for Clinical Burn Assessment with a Focus on Multispectral Imaging. Adv Wound Care (New Rochelle). 2016;5(8):360–378. https://doi.org/10.1089/wound.2015.0684.

14. Jayachandran M., Rodriguez S., Solis E., Lei J., Godavarty A. Critical Review of Noninvasive Optical Technologies for Wound Imaging. Adv Wound Care (New Rochelle). 2016;5(8):349–359. https://doi.org/10.1089/wound.2015.0678.

15. Khaksari K., Nguyen T., Hill B., Quang T., Perreault J., Gorti V. et al. Review of the efficacy of infrared thermography for screening infectious diseases with applications to COVID-19. J Med Imaging (Bellingham). 2021;8(1 Suppl.):010901. https://doi.org/10.1117/1.JMI.8.S1.010901.

16. Zhou Y., Ghassemi P., Chen M., McBride D., Casamento J.P., Pfefer T.J., Wang Q. Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location. J Biomed Opt. 2020;25(9):097002. https://doi.org/10.1117/1.JBO.25.9.097002.

17. Chojnowski M. Infrared thermal imaging in connective tissue diseases. Reumatologia. 2017;55(1):38–43. https://doi.org/10.5114/reum.2017.66686.

18. Khizhnyak E.P., Khizhnyak L.N., Maevsky E.I., Smurov S.V. Possibilities of detection of the patients using a thermography. Challenges and prospects. Journal of New Medical Technologies. 2020;27(4):110–114. (In Russ.) https://doi.org/10.24411/1609-2163-2020-16775.

19. Allen J., Howell K. Microvascular imaging: techniques and opportunities for clinical physiological measurements. Physiol Meas. 2014;35(7):R91– R141. https://doi.org/10.1088/0967-3334/35/7/R91.

20. Schuster A., Thielecke M., Raharimanga V., Ramarokoto C.E., Rogier C., Krantz I., Feldmeier H. High-resolution infrared thermography: a new tool to assess tungiasis-associated inflammation of the skin. Trop Med Health. 2017;45:23. https://doi.org/10.1186/s41182-017-0062-9.

21. Wang S., Mei J., Yang L., Zhao Y. Infer Thermal Information from Visual Information: A Cross Imaging Modality Edge Learning (CIMEL) Framework. Sensors (Basel). 2021;21(22):7471. https://doi.org/10.3390/s21227471.

22. Usamentiaga R., Venegas P., Guerediaga J., Vega L., Molleda J., Bulnes F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors (Basel). 2014;14(7):12305–123048. https://doi.org/10.3390/s140712305.

23. Datsenko A.V., Kazmin V.I. Use of a remote infrared thermography in experimental medicine at extreme influences. Saratov Journal of Medical Scientific Research. 2016;12(4):685–691. (In Russ.) Available at: https://ssmj.ru/2016/4/685.

24. Kozhevnikova I.S., Pankov M.N., Gribanov A.V., Startseva L.F., Ermoshina N.A. The use of infrared thermography in modern medicine (literature review). Ekologiya Cheloveka (Human Ecology). 2017;24(2):39–46. (In Russ.) https://doi.org/10.33396/1728-0869-2017-2-39-46.

25. Fani F., Schena E., Saccomandi P., Silvestri S. CT-based thermometry: an overview. Int J Hyperthermia. 2014;30(4):219–227. https://doi.org/10.3109/02656736.2014.922221.

26. Panteleev I.A., Plekhov O.A., Naymark O.B. Mechanobiological study of structural homeostasis in tumors according to infrared thermography. Physical Mesomechanics. 2012;15(3):105–113. (In Russ.) Available at: https://www.ispms.ru/ru/journals/395/1848/.

27. Singh D., Singh A.K. Role of image thermography in early breast cancer detection – Past, present and future. Comput Methods Programs Biomed. 2020;183:105074. https://doi.org/10.1016/j.cmpb.2019.105074.

28. Prabha S. Thermal Imaging Techniques for Breast Screening – A Survey. Curr Med Imaging. 2020;16(7):855–862. https://doi.org/10.2174/1573405615666191115145038.

29. Zuluaga-Gomez J., Zerhouni N., Al Masry Z., Devalland C., Varnier C. A survey of breast cancer screening techniques: thermography and electrical impedance tomography. J Med Eng Technol. 2019;43(5):305–322. https://doi.org/10.1080/03091902.2019.1664672.

30. Ghayoumi Zadeh H., Haddadnia J., Montazeri A. A Model for Diagnosing Breast Cancerous Tissue from Thermal Images Using Active Contour and Lyapunov Exponent. Iran J Public Health. 2016;45(5):657–669. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935710/.

31. Gogoi U.R., Bhowmik M.K., Bhattacharjee D., Ghosh A.K. Singular value based characterization and analysis of thermal patches for early breast abnormality detection. Australas Phys Eng Sci Med. 2018;41(4):861–879. https://doi.org/10.1007/s13246-018-0681-4.

32. Efimova G.S. The experience of thermal imaging application in clinical oncology. Scientific Journal “ScienceRise”. 2015;3(4–8):91–96. (In Russ.) https://doi.org/10.15587/2313-8416.2015.39341.

33. Kalaiarasi R., Vijayakumar C., Archana R., Venkataramanan R., Chidambaram R., Shrinuvasan S., Prabhu R. Role of Thermography in the Diagnosis of Chronic Sinusitis. Cureus. 2018;10(3):e2298. https://doi.org/10.7759/cureus.2298.

34. Sergeev S.V., Grigorkina E.S., Smogunov V.V., Kuzmin A.V., Volkova N.A. The combined application of thermography and local thermometry for diagnostics, prognostication, modeling, and evaluation of the effectiveness of the treatment of acute sinusitis. Vestnik Oto-Rino-Laringologii. 2014;(5): 52–54. (In Russ.) Available at: https://www.mediasphera.ru/issues/vestnik-otorinolaringologii/2014/5/030042-46682014516.

35. Filinov А.G., Sinitsyn S.N. Comprehensive assessment of the state of the autonomic nervous system and features of thermoregulation in pregnant women. Medical Almanac. 2018;(6):72–75. (In Russ.) Available at: https://www.files.pimunn.ru/almanakh/2018/МА%202018_6.pdf.

36. Urakova N.А., Urakov А.L., Nikolenko V.N., Lovtsova L.V. Application of Infrared Monitoring for Personalization of Obstetric Aid. Sovremennye Tehnologii v Medicine. 2019;11(4):111–119. (In Russ.) https://doi.org/10.17691/stm2019.11.4.13.

37. Urakova N.A. Complex ultrasonic and infrared diagnostics fetal hypoxia during pregnancy and childbirth. Modern Technologies of Medicine. 2013;13(3):26–29. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=20801051.

38. Kapto A.A., Vinogradov I.V., Suleimanov R.V. Non-contact infrared thermography of the scrotum in the diagnosis of varicocele. Experimental and Clinical Urology. 2018;(2):57–65. (In Russ.) Available at: https://ecuro.ru/sites/default/files/magazine/ecu-nomer-2018-2.pdf.

39. Perpetuini D., Filippini C., Cardone D., Merla A. An Overview of Thermal Infrared Imaging-Based Screenings during Pandemic Emergencies. Int J Environ Res Public Health. 2021;18(6):3286. https://doi.org/10.3390/ijerph18063286.

40. Zhang Z., Cao Z., Deng F., Yang Z., Ma S., Guan Q. et al. Infrared Thermal Imaging of Patients With Acute Upper Respiratory Tract Infection: Mixed Methods Analysis. Interact J Med Res. 2021;10(3):e22524. https://doi.org/10.2196/22524.

41. Wang L.T., Cleveland R.H., Binder W., Zwerdling R.G., Stamoulis C., Ptak T. et al. Similarity of chest X-ray and thermal imaging of focal pneumonia: a randomised proof of concept study at a large urban teaching hospital. BMJ Open. 2018;8(1):e017964. https://doi.org/10.1136/bmjopen-2017-017964.

42. Dolgov I.M., Volovik M.G., Nikitina O.V., Shkurat T.P. Thermography screening of thyroid gland: how to distinguish health from pathology. Medical Alphabet. 2019;3(29):32–39. (In Russ.) https://doi.org/10.33667/2078-5631-2019-3-29(404)-32-39.

43. Pronin I.V., Shcherbakov M.I. The applications of medical thermography in alfitherapy. Biomedicine Radioengineering. 2021;24(1):22–28. (In Russ.) https://doi.org/10.18127/j15604136-202101-03.

44. Murtazina N.I., Lutsay E.D. Possibilities of modern methods of thyroid intravital imaging in the organ anatomy study. Medical Newsletter of Vyatka. 2018;(3):32–35. (In Russ.) Available at: https://vyatmedvestnik.ru/index.php/vmv/issue/view/29/no3_59_2018.

45. Vinderlikh M.E., Schekolova N.B. Use of thermal imager in complex diagnosis and treatment of musculoskeletal system diseases: literature review. Perm Medical Journal. 2020;37(4):54–61. (In Russ.) https://doi.org/10.17816/pmj37454-61.

46. Yarullina I.Kh., Sadykova G.A. Radiological research methods for musculoskeletal pain. Bashkortostan Medical Journal. 2021;16(2):79–83. (In Russ.) Available at: https://www.mvb-bsmu.ru/files/journals/2_2021.pdf.

47. Horikoshi M., Inokuma S., Kijima Y., Kobuna M., Miura Y., Okada R., Kobayashi S. Thermal Disparity between Fingers after Cold-water Immersion of Hands: A Useful Indicator of Disturbed Peripheral Circulation in Raynaud Phenomenon Patients. Intern Med. 2016;55(5):461–466. https://doi.org/10.2169/internalmedicine.55.5218.

48. Maverakis E., Patel F., Kronenberg D.G., Chung L., Fiorentino D., Allanore Y. et al. International consensus criteria for the diagnosis of Raynaud’s phenomenon. J Autoimmun. 2014;48–49:60–65. https://doi.org/10.1016/j.jaut.2014.01.020.

49. Kuryliszyn-Moskal A., Kita J., Hryniewicz A. Raynaud’s phenomenon: new aspects of pathogenesis and the role of nailfold videocapillaroscopy. Reumatologia. 2015;53(2):87–93. https://doi.org/10.5114/reum.2015.51508.

50. Matucci-Cerinic M., Kahaleh B., Wigley F.M. Review: evidence that systemic sclerosis is a vascular disease. Arthritis Rheum. 2013;65(8):1953– 1962. https://doi.org/10.1002/art.37988.

51. Van der Weijden M.A.C., van Vugt L.M., Valk D., Wisselink W., van Vugt R.M., Voskuyl A.E., Lems W.F. Exploring thermography: a promising tool in differentiation between infection and ischemia of the acra in systemic sclerosis. Int J Rheum Dis. 2017;20(12):2190–2193. https://doi.org/10.1111/1756-185X.12859.

52. Hughes M., Wilkinson J., Moore T., Manning J., New P., Dinsdale G. et al. Thermographic Abnormalities are Associated with Future Digital Ulcers and Death in Patients with Systemic Sclerosis. J Rheumatol. 2016;43(8): 1519–1522. https://doi.org/10.3899/jrheum.151412.

53. Yarovenko G.V. Thermography as an examination method in patients with venous pathology of the lower extremities. RMJ. 2018;6(II): 50-53. (In Russ.) Available at: https://www.rmj.ru/data/Files/dynamic/Angiologia_Yarovenko.pdf.

54. Stavorovsky K.M. Automatic diagnostic and analysis of thermal images in medical practice. Electronics and Communications. 2014;19(1): 47–55. (In Russ.) Available at: https://ela.kpi.ua/bitstream/123456789/10068/3/7.pdf.

55. Vasilyev Yu.L., Rabinovich S.A., Dydykin S.S., Logachev V.A., Pikhlak U.A. Possibilities of thermographic rating the level of microcirculation with local anesthesia in dentistry. Stomatologiya. 2018;97(4):4–7. (In Russ.) https://doi.org/10.17116/stomat2018970414.

56. Popova N.V., Popov V.A., Gudkov A.B. The use of thermal imaging and heart rate variability to assess the vascular reactions of the hands in patients with coronary heart disease. Fundamental Research. 2013;9(5):899–903. (In Russ.) Available at: https://fundamental-research.ru/ru/article/view?id=32788.

57. Korotkova N.L., Volovik M.G. Thermal imaging assessment of cicatrical tissue capabilities in facioplasty planning. Sovremennye Tehnologii v Medicine. 2015;7(2):120–126. (In Russ.) https://doi.org/10.17691/stm2015.7.2.16.

58. Weum S., Mercer J.B., de Weerd L. Evaluation of dynamic infrared thermography as an alternative to CT angiography for perforator mapping in breast reconstruction: a clinical study. BMC Med Imaging. 2016;16(1):43. https://doi.org/10.1186/s12880-016-0144-x.

59. Zmeeva E.V. Radiation diagnostics of thermal burns of the upper extremities. Journal of Radiology and Nuclear Medicine. 2011;(3):61–63. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=21613646.

60. Morozov A.M. Thermography in diagnosis of acute appendicitis. Postgraduate Doctor. 2017;(2.2):273–280. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=28944860.

61. Petrova A.A. Infrared thermography in experimental pharmacology to assess the anti-inflammatory activity of potential drugs. Advances in Current Natural Sciences. 2014;(6):107–107. (In Russ.) Available at: https://natural-sciences.ru/ru/article/view?id=33805.


Review

For citations:


Morozov AM, Zhukov SV, Sorokovikova TV, Ilkaeva VN, Belyak MA, Pototskaya LA, Minakova JE. Medical thermovision: possibilities and prospects of the method. Meditsinskiy sovet = Medical Council. 2022;(6):256-263. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-6-256-263

Views: 788


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)