Key differences between anti-PD-1/PD-L1 inhibitors
https://doi.org/10.21518/2079-701X-2022-16-9-22-28
Abstract
Indications to immunotherapy in cancer treatment continue to expand, thus there are more and more questions about clinical aspects of using different checkpoint inhibitors. Despite similar mechanism of action between widely used antibodies to PD-1 (nivolumab, pembrolizumab, prolgolimab) and PD-L1 (durvalumab, avelumab, atezolizumab), inhibitors are different due to features of monoclonal antibodies structure they are based on. For instance, toxicity leading to discontinuation of treatment occurs more frequently with anti-PD-L1 drugs than PD-1 inhibitors. On the contrary, the average incidence of any grade IRAEs was higher in patients treated with anti-PD-1 drugs. The revealed differences in the toxicity of the analyzed groups of drugs could be associated with the type of action of the drug. The feature of the PD-L1 inhibitors is more frequent occurrence of antibody-dependent cellular cytotoxicity reactions. However, PD-1 inhibitors showed a statistically significant survival benefit, according to a meta-analysis comparing anti-PD-1 and anti-PD-L1 groups. Besides data on differences in the efficacy and toxicity profiles of these agents, in this article we also analyze different issues in the structure of drug molecules, in particular, the role of LALA mutation in anti-PD-1 inhibitors. Understanding the key distinctive points of check-point inhibitors (CPI) in the future may allow to solve the problem of rechallenge and reintroduction after management of severe IRAEs.
About the Authors
N. V. ZhukovaRussian Federation
Natalia V. Zhukova - Cand. Sci. (Med.), Associate Professor, Department of Oncology, St Petersburg State University; Oncologist, Head of Chemotherapy Department (Antineoplastic Drug Therapy) No. 13, City Clinical Oncology Center.
7-9, Universitetskaya Emb., St Petersburg, 199034; 56, Veteranov Ave., St Petersburg, 198255.
R. V. Orlova
Russian Federation
Rashida V. Orlova - Dr. Sci. (Med.), Professor, Head of the Department of Oncology, St Petersburg State University; Oncologist, Chief Specialist in Clinical Oncology, City Clinical Oncology Center.
7-9, Universitetskaya Emb., St Petersburg, 199034; 56, Veteranov Ave., Saint Petersburg, 198255.
E. A. Kaledina
Russian Federation
Ekaterina A. Kaledina - Oncologist, Department of Antitumor Drug Therapy No. 10, City Clinical Oncology Center.
56, Veteranov Ave., St Petersburg, 198255.
P. A. Naymushina
Russian Federation
Polina A. Naymushina - 5th Year Student of the Faculty of Medicine, St Petersburg State University.
7-9, Universitetskaya Emb., St Petersburg, 199034.
A. M. Malkova
Russian Federation
Anna M. Malkova - Postgraduate Student of the Department of Oncology, Junior Researcher, Laboratory of Autoimmunity Mosaic, St Petersburg State University; Junior Researcher, Laboratory of Biomedical Materials Science, Pavlov First Saint Petersburg State Medical University.
7-9, Universitetskaya Emb., St Petersburg, 199034; 6-8, Lev Tolstoy St., St Petersburg, 197022.
N. P. Beliak
Russian Federation
Natalia P. Beliak - Cand. Sci. (Med.), Assistant of the Department of Oncology, St Petersburg State University; Oncologist, Head of the Department of Antitumor Drug Therapy No. 10, City Clinical Oncology Center.
7-9, Universitetskaya Emb., St Petersburg, 199034; 56, Veteranov Ave., St Petersburg, 198255.
References
1. Agata Y., Kawasaki A., Nishimura H., Ishida Y., Tsubata T., Yagita H. et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765-772. https://doi.org/10.1093/intimm/8.5.765.
2. Yokosuka T., Takamatsu M., Kobayashi-Imanishi W., Hashimoto-Tane A., Azuma M., Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201-1217. https://doi.org/10.1084/jem.20112741.
3. Hui E., Cheung J., Zhu J., Su X., Taylor M.J., Wallweber H.A. et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428-1433. https://doi.org/10.1126/science.aaf1292.
4. Guo B., Fu S., Zhang J., Liu B., Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep. 2016;6:36107. https://doi.org/10.1038/srep36107.
5. Kortlever R.M., Sodir N.M., Wilson C.H., Burkhart D.L., Pellegrinet L., Brown Swigart L. et al. Myc cooperates with ras by programming inflammation and immune suppression. Cell. 2017;171(6):1301-1315.e1314. https://doi.org/10.1016/j.cell.2017.11.013.
6. Inaguma S., Wang Z., Lasota J., Sarlomo-Rikala M., McCue P.A., Ikeda H. et al. Comprehensive Immunohistochemical Study of Programmed Cell Death Ligand 1 (PD-L1): Analysis in 5536 Cases Revealed Consistent Expression in Trophoblastic Tumors. Am J Surg Pathol. 2016;40(8): 1133-1142. https://doi.org/10.1097/PAS.0000000000000653.
7. Yamauchi I., Sakane Y., Fukuda Y., Fujii T., Taura D., Hirata M. et al. Clinical Features of Nivolumab-Induced Thyroiditis: A Case Series Study. Thyroid. 2017;27(7):894-901. https://doi.org/10.1089/thy.2016.0562.
8. Banna G.L., Cantale O., Bersanelli M., Del Re M., Friedlaender A., Cortellini A. et al. Are anti-PD1 and anti-PD-L1 alike? The non-small-cell lung cancer paradigm. Oncol Rev. 2020;(14)2:490. https://doi.org/10.4081/oncol.2020.490.
9. Fessas P., Lee H., Ikemizu S., Janowitz T. A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin Oncol. 2017;44(2):136-140. https://doi.org/10.1053/j.seminoncol.2017.06.002.
10. Brezski R.J., Georgiou G. Immunoglobulin isotype knowledge and application to Fc engineering. Curr Opin Immunol. 2016;40:62-69. https://doi.org/10.1016/j.coi.2016.03.002.
11. Beers S.A., Glennie M.J., White A.L. Influence of immunoglobulin isotype on therapeutic antibody function. Blood. 2016;127(9):1097-1101. https://doi.org/10.1182/blood-2015-09-625343.
12. Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012;119(24):5640-5649. https://doi.org/10.1182/blood-2012-01-380121.
13. Bruhns P., Iannascoli B., England P., Mancardi D.A., Fernandez N., Jorieux S. et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113(16): 3716-3725. https://doi.org/10.1182/blood-2008-09-179754.
14. Dahan R., Sega E., Engelhardt J., Selby M., Korman AJ., Ravetch J.V. FcyRs Modulate the Anti-tumor Activity of Antibodies Targeting the PD-1/ PD-L1 Axis. Cancer Cell. 2015;28(3):285-295. https://doi.org/10.1016/j.ccell.2015.09.011.
15. Zhang T., Song X., Xu L., Ma J., Zhang Y., Gong W. et al. The binding of an anti-PD-1 antibody to FcgammaRIota has a profound impact on its biological functions. Cancer Immunol Immunother. 2018;67(7):10791090. https://doi.org/10.1007/s00262-018-2160-x.
16. Lo Russo G., Moro M., Sommariva M., Cancila V., Boeri M., Centonze G. et al. Antibody-Fc/FcR interaction on macrophages as a mechanism for hyperprogressive disease in non-small cell lung cancer subsequent to PD-1/ PD-L1 blockade. Clin Canc Res. 2018;25(3):989-999. https://doi.org/10.1158/1078-0432.CCR-18-1390.
17. Tjulandin S., Demidov L., Moiseyenko V., Protsenko S., Semiglazova T., Odintsova S. et al. Novel PD-1 inhibitor prolgolimab: expanding nonre-sectable/metastatic melanoma therapy choice. Eur J Cancer. 2021;149:222-232. https://doi.org/10.1016/j.ejca.2021.02.030.
18. Schlothauer T., Herter S., Ferrara Koller C., Grau-Richards S., Steinhart V., Spick C. et al. Novel human IgG1 and IgG4 Fcengineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29(10):457-466. https://doi.org/10.1093/protein/gzw040.
19. Hezareh M., Hessell A.J., Jensen R.C., van de Winkel J.G., Parren P.W. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J Virol. 2001;75(24):12161-12168. https://doi.org/10.1128/JVI.75.24.12161-12168.2001.
20. Liu K., Tan S., Chai Y., Chen D., Song H., Zhang C.W. et al. Structural basis of anti-PD-L1 monoclonal antibody avelumab for tumor therapy. Cell Res. 2017;27(1):151-153. https://doi.org/10.1038/cr.2016.102.
21. Teets A., Pham L., Tran E.L., Hochmuth L., Deshmukh R. Avelumab: A Novel Anti-PD-L1 Agent in the Treatment of Merkel Cell Carcinoma and Urothelial Cell Carcinoma. Crit Rev Immunol. 2018;38(3):159-206. https://doi.org/10.1615/CritRevImmunol.2018025204.
22. Kelly K., Infante J.R., Taylor M.H., Patel M.R., Wong D.J., Iannotti N. et al. Safety profile of avelumab in patients with advanced solid tumors: A pooled analysis of data from the phase 1 JAVELIN solid tumor and phase 2 JAVELIN Merkel 200 clinical trials. Cancer. 2018;124(9): 2010-2017. https://doi.org/10.1002/cncr.31293.
23. Sgambato A., Casaluce F., Sacco P.C., Palazzolo G., Maione P., Rossi A. et al. Anti PD-1 and PDL-1 Immunotherapy in the Treatment of Advanced NonSmall Cell Lung Cancer (NSCLC): A Review on Toxicity Profile and its Management. Curr Drug Saf. 2016;11(1):62-68. https://doi.org/10.2174/1574886311207040289.
24. Pillai R.N., Behera M., Owonikoko T.K., Kamphorst A.O., Pakkala S., Belani C.P et al. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: A systematic analysis of the literature. Cancer. 2018;124(2):271-277. https://doi.org/10.1002/cncr.31043.
25. Brahmer J.R., Horn L., Gandhi L., Spigel D.R., Antonia S.J., Rizvi N.A. et al. Nivolumab (anti-PD-1, BMS-936558, ONO-4538) in patients (pts) with advanced non-small-cell lung cancer (NSCLC): Survival and clinical activity by subgroup analysis. J Clin Oncol. 2014;32:8112. https://doi.org/10.3978/j.issn.2218-6751.2014.09.02.
26. Khunger M., Rakshit S., Pasupuleti V., Hernandez A.V., Mazzone P., Stevenson J. et al. Incidence of pneumonitis with use of programmed death 1 and programmed death-ligand 1 inhibitors in non-small cell lung cancer. Chest. 2017;152(2):271-281. https://doi.org/10.1016/j.chest.2017.04.177.
27. Wang Y., Zhou S., Yang F., Qi X., Wang X., Guan X. et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 2019;5(7):1008-1019. https://doi.org/10.1001/jamaoncol.2019.0393.
28. Chen X., Song X., Li K., Zhang T. FcYR-Binding is an important functional attribute for immune checkpoint antibodies in cancer immunotherapy. Front Immunol. 2019;10:292. https://doi.org/10.3389/fimmu.2019.00292.
29. Latchman Y., Wood C.R., Chernova T., Chaudhary D., Borde M., Chernova I. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;(2)3:261-268. https://doi.org/10.1038/85330.
30. Duan J., Cui L., Zhao X., Bai H., Cai S., Wang G. et al. Use of immunotherapy with programmed cell death 1 vs programmed cell death ligand 1 inhibitors in patients with cancer: a systematic review and meta-analysis. JAMA Oncol. 2020;6(3):375-384. https://doi.org/10.1001/jamaoncol.2019.5367.
31. Tartarone A., Roviello G., Lerose R., Roudi R., Aieta M., Zoppoli P. Anti-PD-1 versus anti-PD-L1 therapy in patients with pretreated advanced non-small-cell lung cancer: a meta-analysis. Future Oncol. 2019;15(20):2423-2433. https://doi.org/10.2217/fon-2018-0868.
32. Addeo A., Banna G.L., Metro G., Di Maio M. Chemotherapy in Combination With Immune Checkpoint Inhibitors for the First-Line Treatment of Patients With Advanced Non-small Cell Lung Cancer: A Systematic Review and Literature-Based Meta-Analysis. Front Oncol. 2019;9:264. https://doi.org/10.3389/fonc.2019.00264.
33. Zhang Y., Zhou H., Zhang L. Which is the optimal immunotherapy for advanced squamous non-small-cell lung cancer in combination with chemotherapy: anti-PD-1 or anti-PD-L1? J Immunother Cancer. 2019;6(1):135. https://doi.org/10.1186/s40425-018-0427-6.
Review
For citations:
Zhukova NV, Orlova RV, Kaledina EA, Naymushina PA, Malkova AM, Beliak NP. Key differences between anti-PD-1/PD-L1 inhibitors. Meditsinskiy sovet = Medical Council. 2022;(9):22-28. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-9-22-28