Preview

Meditsinskiy sovet = Medical Council

Advanced search

What do we know about the molecular and biological features of EGFR in glioblastomas and non-small cell lung cancer?

https://doi.org/10.21518/2079-701X-2022-16-9-126-130

Abstract

The EGFR mutation is one of the most common mutations in malignant neoplasms. The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation when activated by binding one of its ligands. The receptor is located on the cell surface, where ligand binding activates a tyrosine kinase in the intracellular region of the receptor. The tyrosine kinase phosphorylates a number of intracellular substrates and further activates pathways leading to cell growth, DNA synthesis and oncogene expression. Gene amplification is a process characterized by an increase in the copy number of a restricted region in the chromosome shoulder, which is associated with overexpression of the corresponding amplified gene. Amplification of the EGFR gene is detected in about 40% of glioblastoma cases. It should be noted that EGFR gene amplification is accompanied by the acquisition of many mutations, which include intragenic deletions and point mutations. The most common EGFR mutation in glioblastomas of the brain is a deletion in exon 2-7 (EGFRvIII) frame, which occurs in 50% of all cases of EGFR-amplified glioblastoma. Despite great advances in molecular biology and targeted therapies, patients with non-small cell lung cancer (NSCLC) and glioblastoma still lead in mortality. Most of them have “classical” EGFR mutations (deletions in exon 19 and 21), but 15-20% of patients have rare mutations, which most often include point mutations, deletions and insertions in exon 18 and 25. Thus, rare EGFR mutations are a promising diagnostic and therapeutic target in cancer. This review summarizes data on the role of EGFR in the carcinogenesis of NMPL and glioblastoma. The literature search was performed using the Pubmed database.

About the Authors

L. M. Kogoniya
Moscow Regional Research Clinical Institute named after M.F. Vladimirsky
Russian Federation

Lali М. Kogoniya - Dr. Sci. (Med.), Professor, Department of Oncology and Thoracic Surgery, Faculty of Advanced Medical Education, Moscow Regional Research Clinical Institute named after M.F. Vladimirsky.

61/2, Bldg. 1, Schepkin St., Moscow, 129110.



M. S. Gubenko
Moscow Regional Research Clinical Institute named after M.F. Vladimirsky
Russian Federation

Marina S. Gubenko - Resident of the Department of Oncology and Thoracic Surgery of the Faculty of Advanced Medical Education, Moscow Regional Research Clinical Institute named after M.F. Vladimirsky.

61/2, Bldg. 1, Schepkin St., Moscow, 129110.



T. I. Ashkhatcava
Pirogov Russian National Research Medical University
Russian Federation

Turna I. Ashkhatcava - Postgraduate Student, Department of Neurology, Neurosurgery and Medical Genetics Pirogov Russian National Research Medical University.

1, Ostrovityanov St., Moscow, 117997.



References

1. D'Angelo S.P., Pietanza M.C., Johnson M.L., Riely G.J., Miller V.A., Sima C.S. et al. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J Clin Oncol. 2011;29(15):2066-2070. https://doi.org/10.1200/JCO.2010.32.6181.

2. Brennan C.W., Verhaak R.G., McKenna A., Campos B., Noushmehr H., Salama S.R. et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462-477. https://doi.org/10.1016/j.cell.2013.09.034.

3. Ashkhatsava T., Tatarinova M., Kogonia L., Naskhletashvili D., Zhukov V. Modern approaches to molecular genetic diagnostics glioblastoma from the clinician's point of view. Voprosy Onkologii. 2021;67(1):13-19. (In Russ.) https://doi.org/10.37469/0507-3758-2021-67-1.

4. Sledzinska P., Bebyn M.G., Furtak J., Kowalewski J., Lewandowska M.A. Prognostic and Predictive Biomarkers in Gliomas. Int J Mol Sci. 2021;22(19):10373. https://doi.org/10.3390/ijms221910373.

5. Carey K.D., Garton A.J., Romero M.S., Kahler J., Thomson S., Ross S. et al. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res. 2006;66(16): 8163-8171. https://doi.org/10.1158/0008-5472.CAN-06-0453.

6. Kobayashi Y., Mitsudomi T. Not all epidermal growth factor receptor mutations in lung cancer are created equal: perspectives for individualized treatment strategy. Cancer Sci. 2016;107(9):1179-1186. https://doi.org/10.1111/cas.12996.

7. Tanaka К., Babic I., Nathanson G., Akhavan D., Guo D., Gini B. et al. Oncogenic EGFR signaling activates an mTORC2-NF-KB pathway that promotes chemotherapy resistance. Cancer Discov. 2011;1(6):524-538. https://doi.org/10.1158/2159-8290.CD-11-0124.

8. Huang P.H., Mukasa A., Bonavia R., Flynn R.A., Brewer Z.E., Cavenee W.K. et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA. 2007;104(31):12867-12872. https://doi.org/10.1073/pnas.0705158104.

9. Horvath S., Zhang B., Carlson M., Lu K.V., Zhu S., Felciano R.M. et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA. 2006;103(46):17402-17407. https://doi.org/10.1073/pnas.0608396103.

10. Lal A., Glazer C.A., Martinson H.M., Friedman H.S., Archer G.E., Sampson J.H., Riggins G.J. Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res. 2002;62(12):3335-3339. Available at: https://pubmed.ncbi.nlm.nih.gov/12067969/.

11. Mukasa A., Wykosky J., Ligon K.L., Chin L., Cavenee W.K., Furnari F. Mutant EGFR is required for maintenance of glioma growth in vivo, and its ablation leads to escape from receptor dependence. Proc Natl Acad Sci USA. 2010;107(6):2616-2621. https://doi.org/10.1073/pnas.0914356107.

12. Inda M.-del-M., Bonavia R., Mukasa A., Narita Y., Sah D.W.Y., Vandenberg S. et al. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 2010;24(16):1731-1745. https://doi.org/10.1101/gad.1890510.

13. Yun C.-H., Boggon T.J., Li Y., Woo M.S., Greulich H., Meyerson M., Eck M.J. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell. 2007;11(3):217-227. https://doi.org/10.1016/j.ccr.2006.12.017.

14. Shan Y., Eastwood M.P., Zhang X., Kim E.T., Arkhipov A., Dror R.O. et al. Oncogenic mutations counteract intrinsic disorder in the EGFR kinase and promote receptor dimerization. Cell. 2012;149(4):860-870. https://doi.org/10.1016/j.cell.2012.02.063.

15. Landau M., Ben-Tal N. Dynamic equilibrium between multiple active and inactive conformations explains regulation and oncogenic mutations in ErbB receptors. Biochim Biophys Acta. 2008;1785(1):12-31. https://doi.org/10.1016/j.bbcan.2007.08.001.

16. Eck M.J., Yun C.-H. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim Biophys Acta. 2010;1804(3):559-566. https://doi.org/10.1016/j.bbapap.2009.12.010.

17. He M., Capelletti M., Nafa K., Yun C.-H., Arcila M.E., Miller V.A. EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma. Clin Cancer Res. 2012;18(6):1790-1797. https://doi.org/10.1158/1078-0432.

18. Yasuda H., Park E., Yun C.-H., Sng N.J., Lucena-Araujo A.R., Yeo W.-L. et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013;5(216):216ra177. https://doi.org/10.1126/scitranslmed.3007205.

19. Wang J., Li X., Xue X., Ou Q., Wu X., Liang Y. et al. Clinical outcomes of EGFR kinase domain duplication to targeted therapies in NSCLC. Int J Cancer. 2019;144(11):2677-2682. https://doi.org/10.1002/ijc.31895.

20. Baik C.S., Wu D., Smith C., Martins R.G., Pritchard C.C. Durable response to tyrosine kinase inhibitor therapy in a lung Cancer patient harboring epidermal growth factor receptor tandem kinase domain duplication. J Thorac Oncol. 2015;10(10):e97-e99. https://doi.org/10.1097/JTO.0000000000000586.

21. Costa D.B. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements. Transl Lung Cancer Res. 2016;5(3):331-337. https://doi.org/10.21037/tlcr.2016.06.04.

22. Lee A., Arasaratnam M., Chan D.L.H., Khasraw M., Howell V.M., Wheeler H. Anti-epidermal growth factor receptor therapy for glioblastoma in adults. Cochrane Database Syst Rev. 2020;5(5):CD013238. https://doi.org/10.1002/14651858.CD013238.pub2.

23. Lee K., Koo H., Kim Y., Kim D., Son E., Yang H. et al. Therapeutic Efficacy of GC1118, a Novel Anti- EGFR Antibody, against Glioblastoma with High EGFR Amplification in Patient-Derived Xenografts. Cancers (Basel). 2020;12(11):3210. https://doi.org/10.1056/NEJMoa1809064.

24. Weller M., Butowski N., Tran D.D., Recht L.D., Lim M., Hirte H. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373-1385. https://doi.org/10.1016/S1470-2045(17)30517-X.

25. Garrett T.P.J., Burgess A.W., Gan H.K., Luwor R.B., Cartwright G., Walker F. et al. Antibodies specifically targeting a locally misfolded region of tumor associated EGFR. Proc Natl Acad Sci USA. 2009;106(13):5082-5087. https://doi.org/10.1056/NEJMoa1112088.

26. Orellana L., Thorne A.H., Lema R., Gustavsson J., Parisian A.D., Hospital A. et al. Oncogenic mutations at the EGFR ectodomain structurally convergeto remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci USA. 2019;116(20):10009-10018. https://doi.org/10.1073/pnas.1821442116.

27. Narita Y., Muragaki Y., Maruyama T., Kagawa N., Asai K., Kuroda J. et al. Phase I/II study of depatuxizumab mafodotin (ABT-414) monotherapy or combination with temozolomide in Japanese patients with/without EGFR-amplified recurrent glioblastoma. J Clin Oncol. 2019;37(15_Suppl.): 2065-2065. https://doi.org/10.1200/JCO.2019.37.15_SUPPL.2065.

28. Bent M.J.V.D., Eoli M., Sepulveda J.M., Smits M., Walenkamp A., Frenel J.-S. et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 2020;22(5):684-693. https://doi.org/10.1093/neuonc/noz222.

29. Gan H.K., Reardon D.A., Lassman A.B., Merrell R., van den Bent M., Butowski N. et al. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. Neuro Oncol. 2018;20(6):838-847. https://doi.org/10.1093/neuonc/nox202.


Review

For citations:


Kogoniya LM, Gubenko MS, Ashkhatcava TI. What do we know about the molecular and biological features of EGFR in glioblastomas and non-small cell lung cancer? Meditsinskiy sovet = Medical Council. 2022;(9):126-130. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-9-126-130

Views: 692


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)