Preview

Meditsinskiy sovet = Medical Council

Advanced search

The effect of a new coronavirus infection caused by the SARS-CoV-2 virus on microcirculation in the conjunctiva

https://doi.org/10.21518/2079-701X-2022-16-14-206-211

Abstract

Introduction. The availability of an objective assessment of the microcirculatory bed is possible when examining the vessels of the conjunctiva. This is especially true in individuals who have had COVID-19 and have diseases associated with endothelial dysfunction.

Aim. To study the microcirculation in the conjunctiva after a new coronavirus infection caused by the SARS-CoV-2 virus.

Materials and methods. 83 patients with a history of coronavirus infection were examined. Patients were divided into 2 groups depending on the presence or absence of comorbidities. Group 1 patients (n = 42) with post-COVID changes in the conjunctiva (severe  injection of  the eyeball, chemosis, microhemorrhagia, folliculosis of  the tarsal and bulbar conjunctiva, the  presence of  a  nodular formation  (conflicts), slight edema of  the corneal epithelium) and a  history of  concomitant diseases: arterial hypertension, diabetes, coronary heart disease, atherosclerosis. Group 2 patients (n = 41) with no history of concomitant diseases and similar post-COVID changes in  the conjunctiva. The control group consisted of  healthy volunteers without a  history of coronavirus infection (n = 30). All subjects underwent laser Doppler flowmetry of the bulbar conjunctiva 3, 6, 12 months after the coronavirus infection.

Results and discussion. In comparison with the control group of persons after 3 months, microcirculatory disorders were detected in both groups (group 1 – subcompensated, group 2 – decompensated). In group 1, after 6 months and 12 months, violations persisted in  the subcompensation stage, which were accompanied by an increase in  the intensity of  the functioning of  the regulatory systems of the microcirculation: the M index corresponded to normal values, and the values of σ and Kv were above the norm. After 6 months in group 2, compensation of microcirculatory disorders was noted (indicators M, σ, Kv were normal), which persisted even by 12 months of observation.

Conclusion. The data obtained indicate that in patients with concomitant endothelial dysfunction, the processes of restoration of the microvasculature are slowed down.

About the Authors

T. N. Safonova
Research Institute of Eye Diseases
Russian Federation

Tatiana N. Safonova, Cand. Sci. (Med.), Leading Researcher at the Department of Pathology of the Lacrimal Apparatus

11A, B, Rossolimo St., Moscow, 119021



G. V. Zaitseva
Research Institute of Eye Diseases
Russian Federation

Galina V. Zaitseva, Cand. Sci. (Med.), Junior Researcher at the Department of Pathology of the Lacrimal Apparatus

11A, B, Rossolimo St., Moscow, 119021



N. P. Kintyukhina
Research Institute of Eye Diseases
Russian Federation

Natalia P. Kintyukhina, Cand. Sci.  (Med.), Researcher at the  Department of  Pathology of  the Lacrimal Apparatus

11A, B, Rossolimo St., Moscow, 119021



References

1. Higgins V., Sohaei D., Diamandis E.P., Prassas I. COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit Rev Clin Lab Sci. 2021;58(5):297–310. https://doi.org/10.1080/10408363.2020.1860895.

2. To K.K., Sridhar S., Chiu K.H., Hung D.L., Li X., Hung I.F. et al. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerg Microbes Infect. 2021;10(1):507–535. https://doi.org/10.1080/22221751.2021.1898291.

3. Rodriguez-Morales A.J., Bonilla-Aldana D.K., Balbin-Ramon G.J., Rabaan A.A., Sah R., Paniz-Mondolfi A. et al. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez Med. 2020;28(1):3–5. Available at: https://www.infezmed.it/media/journal/Vol_28_1_2020_1.pdf.

4. Malik Y.S., Sircar S., Bhat S., Sharun K., Dhama K., Dadar M. et al. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q. 2020;40(1):68– 76. https://doi.org/10.1080/01652176.2020.1727993.

5. Lu C.W., Liu X.F., Jia Z.F. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet. 2020;395(10224):e39. https://doi.org/10.1016/S0140-6736(20)30313-5.

6. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2): 631–637. https://doi.org/10.1002/path.1570.

7. Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A., Solomon S.D. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. https://doi.org/10.1056/NEJMsr2005760.

8. McGonagle D., O’Donnell J.S., Sharif K., Emery P., Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437–e445. https://doi.org/10.1016/S2665-9913(20)30121-1.

9. Hu Y., Sun J., Dai Z., Deng H., Li X., Huang Q. et al. Prevalence and severity of corona virus disease 2019 (COVID-19): A systematic review and metaanalysis. J Clin Virol. 2020;127:104371. https://doi.org/10.1016/j.jcv.2020.104371.

10. Gąsecka A., Filipiak K.J., Jaguszewski M.J. Impaired microcirculation function in COVID-19 and implications for potential therapies. Cardiol J. 2020;27(5):485–488. https://doi.org/10.5603/CJ.2020.0154.

11. Huntley K.S., Fine L., Bernstein J.A. Atopic endotypes as a modulating factor for SARS-CoV-2 infection: mechanisms and implications. Curr Opin Allergy Clin Immunol. 2021;21(3):252–260. https://doi.org/10.1097/ACI.0000000000000724.

12. Grolmusz V.K., Bozsik A., Papp J., Patócs A. Germline genetic variants of viral entry and innate immunity may influence susceptibility to SARSCoV-2 infection: toward a polygenic risk score for risk stratification. Front Immunol. 2021;12:653489. https://doi.org/10.3389/fimmu.2021.653489.

13. V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–170. https://doi.org/10.1038/s41579-020-00468-6.

14. Das S. Microcirculatory changes and thrombotic complications in COVID-19. Br J Community Nurs. 2021;26(10):474–480. https://doi.org/10.12968/bjcn.2021.26.10.474.

15. Colantuoni A., Martini R., Caprari P., Ballestri M., Capecchi P.L., Gnasso A. et al. COVID-19 sepsis and microcirculation dysfunction. Front Physiol. 2020;11:747. https://doi.org/10.3389/fphys.2020.00747.

16. Kuznik B.I., Smolyakov Y.N., Shapovalov Y.K., Shapovalov K.G., Lukyanov S.A., Parts D.S. The state of microcirculatory hemodynamics in patients with moderate and severe COVID-19. Bull Exp Biol Med. 2021;171(4):453–457. https://doi.org/10.1007/s10517-021-05248-7.

17. Sen M., Honavar S.G., Sharma N., Sachdev M.S. COVID-19 and eye: a review of ophthalmic manifestations of COVID-19. Indian J Ophthalmol. 2021;69(3):488–509. https://doi.org/10.4103/ijo.IJO_297_21.

18. Lawrenson J.G., Buckley R.J. COVID-19 and the eye. Ophthalmic Physiol Opt. 2020;40(4):383–388. https://doi.org/10.1111/opo.12708.

19. Yener A.Ü. COVID-19 and the eye: ocular manifestations, treatment and protection measures. Ocul Immunol Inflamm. 2021;29(6):1225–1233. https://doi.org/10.1080/09273948.2021.1977829.

20. Rizzoni D., Agabiti Rosei C., De Ciuceis C., Semeraro F., Rizzoni M., Docchio F. New methods to study the microcirculation. Am J Hypertens. 2018;31(3):265–273. https://doi.org/10.1093/ajh/hpx211.

21. Mottet B., Aptel F., Geiser M.H., Hera R., Zhou T., Almanjoumi A. et al. Choroidal blood flow after the first intravitreal ranibizumab injection in neovascular age-related macular degeneration patients. Acta Ophthalmol. 2018;96(7):e783–e788. https://doi.org/10.1111/aos.13763.

22. Roeykens H.J., Deschepper E., De Moor R.J. Laser Doppler flowmetry: reproducibility, reliability, and diurnal blood flow variations. Lasers Med Sci. 2016;31(6):1083–1092. https://doi.org/10.1007/s10103-016-1953-4.

23. Safonova T.N., Kintukhina N.P., Sidorov V.V., Gladkova O.V., Reyn E.S. Microcirculatory blood and lymph flow examination in eyelid skin by laser Doppler flowmetry. Vestnik Oftalmologii. 2017;133(3):16–21. (In Russ.) https://doi.org/10.17116/oftalma2017133316-21.

24. Takhchidi K.P., Mitronina M.L., Potapova L.S., Sidorov V.V. Investigation of microcirculation status of anterior segment of eyes by method of the laser Doppler flowmetry in children with different refraction types. Fyodorov Journal of Ophthalmic Surgery. 2011;(4):49–53. (In Russ.) Available at: https://eyepress.ru/article.aspx?10141.

25. Funk R.H. Funktionelle Unterschiede in den Mikrozirkulationsgebieten des Auges. Klin Monbl Augenheilkd. 2015;232(2):133–140. https://doi.org/10.1055/s-0034-1383384.

26. Barkhatov I.V. Laser doppler flowmetry for human blood microcirculation assessment. Kazan Medical Journal. 2014;95(1):63–69. (In Russ.) https://doi.org/10.17816/KMJ1458.

27. Felder A.E., Mercurio C., Wanek J., Ansari R., Shahidi M. Automated realtime conjunctival microvasculature image stabilization. IEEE Trans Med Imaging. 2016;35(7):1670–1675. https://doi.org/10.1109/TMI.2016.2522918.

28. Kozlov V.I., Gurova O.A., Litvin F.B., Morozov M.V., Ibragim R.Kh. Disorders of tissue blood flow, their pathogenesis and classification. Regional Blood Circulation and Microcirculation. 2007;6(1):75–76. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=9471294.

29. Pons S., Fodil S., Azoulay E., Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):353. https://doi.org/10.1186/s13054-020-03062-7.

30. Jung F., Krüger-Genge A., Franke R.P., Hufert F., Küpper J.H. COVID-19 and the endothelium. Clin Hemorheol Microcirc. 2020;75(1):7–11. https://doi.org/10.3233/CH-209007.

31. Hu B., Huang S., Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(1):250–256. https://doi.org/10.1002/jmv.26232.


Review

For citations:


Safonova TN, Zaitseva GV, Kintyukhina NP. The effect of a new coronavirus infection caused by the SARS-CoV-2 virus on microcirculation in the conjunctiva. Meditsinskiy sovet = Medical Council. 2022;(14):206-211. (In Russ.) https://doi.org/10.21518/2079-701X-2022-16-14-206-211

Views: 590


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)