Preview

Meditsinskiy sovet = Medical Council

Advanced search

Validation of the Russian version of the Social Media Disorder Scale (SMDS) questionnaire in adolescents

https://doi.org/10.21518/ms2023-491

Abstract

Introduction. An urgent medical and social problem at present is the need to develop nationally adapted versions of the questionnaire for assessing dependence on social networks, which is due to the avalanche-like increase in the prevalence of this phenomenon, especially among adolescents and youth, and often associated with disorders of the neuropsychic and somatic spectrum.

Aim. Validation of the English-language Social Media Disorder scale (SMDS) questionnaire based on 9 criteria, including psychopathological aspects of engagement with social networking sites.

Materials and methods. After the procedures of direct and reverse translation of the questionnaire, the psychometric validation of the test was carried out on a Russian-speaking sample of 3074 adolescents aged 11–19 years (46.1% of boys and 53.9% of girls, median age 14 (13–16) years) – students of 10 educational institutions in Krasnoyarsk. The external validity of the SMDS- RU questionnaire was assessed using the following methods: Chen Internet Addiction Scale (CIAS) – to assess the presence of Internet addicted behavior; the Strengths and Challenges Questionnaire (SDQ) – to analyze the mental health of the subjects.

Results. Expiratory and confirmatory factor analyzes demonstrated good agreement between the test components. The results of confirmatory factor analysis confirmed its single-factor structure (CFI = 0.9, TLI = 0.9, RMSEA = 0.06), an acceptable Cronbach’s Alpha value (Cronbach’s Alpha = 0.7) indicates its sufficient internal consistency and reliability. The external validity of the SMDS-RU questionnaire was confirmed by established associations with the results of the Chen Internet Addiction Test (CIAS) and the Strengths and Challenges Questionnaire (SDQ) by R. Goodman. Test-retest reliability when measured at 6-month intervals also demonstrated acceptable results: the Spearman correlation coefficient between the sums of scores of two measurements was 0.66, p < 0.001.

Conclusion. The Russian-language version of the Social Network Addiction Questionnaire (SMDS-RU) developed for teenagers has sufficient information content, reliability, internal and external validity and can be actively used in the Russian adolescent population.

About the Authors

S. Yu. Tereshchenko
Scientific Research Institute of Medical Problems of the North
Russian Federation

Sergey Yu. Tereshchenko, Dr. Sci. (Med.), Head of the Clinical Department of Somatic and Mental Health of Children

3g, Partizan Zheleznyak St., Krasnoyarsk, 660022



L. S. Evert
Scientific Research Institute of Medical Problems of the North; Katanov Khakass State University
Russian Federation

Lidiya S. Evert, Dr. Sci. (Med.), Chief Researcher, Clinical Department of Somatic and Mental Health of Children; Professor of the Department of General Professional Disciplines of the Medical Institute

3g, Partizan Zheleznyak St., Krasnoyarsk, 660022

92, Bldg. 1, Lenin Ave., Abakan, 655000



Yu. R. Kostyuchenko
Scientific Research Institute of Medical Problems of the North
Russian Federation

Yuliya R. Kostyuchenko, Junior Researcher, Clinical Department of Somatic and Mental Health of Children

3g, Partizan Zheleznyak St., Krasnoyarsk, 660022



References

1. Fineberg NA, Demetrovics Z, Stein DJ, Ioannidis K, Potenza MN, Grünblatt E et al. Manifesto for a European research network into Problematic Usage of the Internet. Eur Neuropsychopharmacol. 2018;28(11):1232–1246. https://doi.org/10.1016/j.euroneuro.2018.08.004.

2. Brand M. Can internet use become addictive? Science. 2022;376(6595):798–799. https://doi.org/10.1126/science.abn4189.

3. Lopez-Fernandez O, Kuss DJ. Preventing Harmful Internet Use-Related Addiction Problems in Europe: A Literature Review and Policy Options. Int J Environ Res Public Health. 2020;17(11):3797. https://doi.org/10.3390/ijerph17113797.

4. Bozzola E, Spina G, Agostiniani R, Barni S, Russo R, Scarpato E et al. The Use of Social Media in Children and Adolescents: Scoping Review on the Potential Risks. Int J Environ Res Public Health. 2022;19(16):9960. https://doi.org/10.3390/ijerph19169960.

5. Fineberg NA, Menchón JM, Hall N, Dell’Osso B, Brand M, Potenza MN et al. Advances in problematic usage of the internet research – A narrative review by experts from the European network for problematic usage of the internet. Compr Psychiatry. 2022;118:152346. https://doi.org/10.1016/j.comppsych.2022.152346.

6. Shannon H, Bush K, Villeneuve PJ, Hellemans KG, Guimond S. Problematic Social Media Use in Adolescents and Young Adults: Systematic Review and Meta-analysis. JMIR Ment Health. 2022;9(4):e33450. https://doi.org/10.2196/33450.

7. Kuss DJ, Griffiths MD. Online social networking and addiction – a review of the psychological literature. Int J Environ Res Public Health. 2011;8(9):3528–3552. https://doi.org/10.3390/ijerph8093528.

8. Lee MR, Weerts EM. Oxytocin for the treatment of drug and alcohol use disorders. Behav Pharmacol. 2016;27(8):640–648. https://doi.org/10.1097/FBP.0000000000000258.

9. Griffiths M. A ‘components’ model of addiction within a biopsychosocial framework. J Subst Use. 2005;10(4):191–197. https://doi.org/10.1080/14659890500114359.

10. Malygin VL, Khomeriki NS, Antonenko AA. Individually-psychological qualities of adolescents as risk-factors for development of internet-addictive behavior. Meditsinskaya Psikhologiya v Rossii. 2015;(1):7. (In Russ.) Available at: http://mprj.ru/archiv_global/2015_1_30/nomer10.php.

11. Zotova D, Rozanov V. Pathological use and dependence on social networks – analysis from the position of phenomenology of addictive behavior. Vestnik of Saint Petersburg University. Psychology. 2020;10(2):158–183. (In Russ.) https://doi.org/10.21638/spbu16.2020.204.

12. Sheinov VP, Devitsyn AS. The development of a reliable and valid social media dependence questionnaire. Systems Psychology and Sociology. 2021;(38):41–55. (In Russ.) https://doi.org/10.25688/2223-6872.2021.38.2.04.

13. Kochetkov NV. Internet addiction and addiction to computer games in the work of Russian psychologists. Social Psychology and Society. 2020;11(1):27–54. (In Russ.) https://doi.org/10.17759/sps.2020110103.

14. Polyakova OO. Features of teenagers’ computer game activity. Volga Pedagogical Bulletin. 2018;6(1):55–59. (In Russ.) Available at: https://www.elibrary.ru/ybszut.

15. Sheinov VP, Tarelkin AI. Relationships between students’ addiction to social networks and psychological distress. Psychology in Education. 2022;(4):188–204. (In Russ.) https://doi.org/10.33910/2686-9527-2022-4-2-188-204.

16. Biolcati R, Mancini G, Pupi V, Mugheddu V. Facebook Addiction: Onset Predictors. J Clin Med. 2018;7(6):118. https://doi.org/10.3390/jcm7060118.

17. Cudo A, Torój M, Demczuk M, Francuz P. Dysfunction of Self-Control in Facebook Addiction: Impulsivity Is the Key. Psychiatr Q. 2020;91(1):91–101. https://doi.org/10.1007/s11126-019-09683-8.

18. Park B, Han DH, Roh S. Neurobiological findings related to Internet use disorders. Psychiatry Clin Neurosci. 2017;71(7):467–478. https://doi.org/10.1111/pcn.12422.

19. Weinstein A, Livny A, Weizman A. New developments in brain research of internet and gaming disorder. Neurosci Biobehav Rev. 2017;75:314–330. https://doi.org/10.1016/j.neubiorev.2017.01.040.

20. Yuan K, Cheng P, Dong T, Bi Y, Xing L, Yu D et al. Cortical thickness abnormalities in late adolescence with online gaming addiction. PLoS ONE. 2013;8(1):e53055. https://doi.org/10.1371/journal.pone.0053055.

21. Hong SB, Zalesky A, Cocchi L, Fornito A, Choi EJ, Kim HH et al. Decreased functional brain connectivity in adolescents with internet addiction. PLoS ONE. 2013;8(2):e57831. https://doi.org/10.1371/journal.pone.0057831.

22. Liu J, Gao XP, Osunde I, Li X, Zhou SK, Zheng HR, Li LJ. Increased regional homogeneity in internet addiction disorder: a resting state functional magnetic resonance imaging study. Chin Med J (Engl). 2010;123(14):1904–1908. Available at: https://mednexus.org/doi/pdf/10.3760/cma.j.issn.0366-6999.2010.14.014.

23. Park HS, Kim SH, Bang SA, Yoon EJ, Cho SS, Kim SE. Altered regional cerebral glucose metabolism in internet game overusers: A 18F-fluorodeoxyglucose positron emission tomography study. CNS Spectr. 2010;15(3):159–166. https://doi.org/10.1017/s1092852900027437.

24. Kim SH, Baik SH, Park CS, Kim SJ, Choi SW, Kim SE. Reduced striatal dopamine D2 receptors in people with Internet addiction. Neuroreport. 2011;22(8):407–411. https://doi.org/10.1097/WNR.0b013e328346e16e.

25. Dong G, Zhou H, Zhao X. Impulse inhibition in people with Internet addiction disorder: electrophysiological evidence from a Go/NoGo study. Neurosci Lett. 2010;485(2):138–142. https://doi.org/10.1016/j.neulet.2010.09.002.

26. Duradoni M, Innocenti F, Guazzini A. Well-being and social media: A systematic review of Bergen addiction scales. Future Internet. 2020;12(2):24. https://doi.org/10.3390/fi12020024.

27. Boniel-Nissim M, Alt D. Problematic Social Media Use and Intensive Social Media Use Among Academic Students During the COVID-19 Pandemic: Associations With Social Support and Life Satisfaction. Front Educ. 2022;7:876774. https://doi.org/10.3389/feduc.2022.876774.

28. Valkenburg PM, Peter J. Online communication among adolescents: an integrated model of its attraction, opportunities, and risks. J Adolesc Health. 2011;48(2):121–127. https://doi.org/10.1016/j.jadohealth.2010.08.020.

29. Van Den Eijnden RJJM, Lemmens JS, Valkenburg PM. The Social Media Disorder Scale: Validity and psychometric properties. Comput Human Behav. 2016;61:478–487. https://doi.org/10.1016/j.chb.2016.03.038.

30. Boer M, van den Eijnden RJJM, Finkenauer C, Boniel-Nissim M, Marino C, Inchley J et al. Cross-national validation of the social media disorder scale: findings from adolescents from 44 countries. Addiction. 2022;117(3):784–795. https://doi.org/10.1111/add.15709.

31. Chen SH, Weng LJ, Su YJ, Wu HM, Yang PF. Development of a Chinese Internet Addiction Scale and Its Psychometric Study. Chinese Journal of Psychology. 2003;45(3):279–294. Available at: https://psycnet.apa.org/record/2004-10292-005.

32. Малыгин ВЛ, Феклисов КА. Интернет-зависимое поведение. Критерии и методы диагностики. М.: МГМСУ; 2011. 33 c. Режим доступа: http://www.medpsy.ru/library/library135.pdf.

33. Goodman R. Psychometric properties of the strengths and difficulties questionnaire. J Am Acad Child Adolesc Psychiatry. 2001;40(11):1337–1345. https://doi.org/10.1097/00004583-200111000-00015.

34. Goodman R, Slobodskaya H, Knyazev G. Russian child mental health – a cross-sectional study of prevalence and risk factors. Eur Child Adolesc Psychiatry. 2005;14(1):28–33. https://doi.org/10.1007/s00787-005-0420-8.

35. Rosseel Y. lavaan: An R Package for Structural Equation Modeling. J Stat Softw. 2012;48(2):1–36. https://doi.org/10.18637/jss.v048.i02.

36. Brown TA. Confirmatory Factor Analysis for Applied Research. 2nd ed. New York: Guilford; 2015. 462 p.

37. Hu LT, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6(1):1–55. https://doi.org/10.1080/10705519909540118.

38. Van den Eijnden R, Koning I, Doornwaard S, van Gurp F, Ter Bogt T. The impact of heavy and disordered use of games and social media on adolescents’ psychological, social, and school functioning. J Behav Addict. 2018;7(3):697–706. https://doi.org/10.1556/2006.7.2018.65.

39. Paakkari L, Tynjälä J, Lahti H, Ojala K, Lyyra N. Problematic Social Media Use and Health among Adolescents. Int J Environ Res Public Health. 2021;18(4):1885. https://doi.org/10.3390/ijerph18041885.

40. Cheng C, Lau YC, Chan L, Luk JW. Prevalence of social media addiction across 32 nations: Meta-analysis with subgroup analysis of classification schemes and cultural values. Addict Behav. 2021;117:106845. https://doi.org/10.1016/j.addbeh.2021.106845.

41. Wartberg L, Kriston L, Thomasius R. Internet gaming disorder and problematic social media use in a representative sample of German adolescents: Prevalence estimates, comorbid depressive symptoms and related psychosocial aspects. Comput Human Behav. 2020;103:31–36. https://doi.org/10.1016/j.chb.2019.09.014.

42. Bányai F, Zsila Á, Király O, Maraz A, Elekes Z, Griffiths MD et al. Problematic Social Media Use: Results from a Large-Scale Nationally Representative Adolescent Sample. PLoS ONE. 2017;12(1):e0169839. https://doi.org/10.1371/journal.pone.0169839.

43. Al-Khani AM, Saquib J, Rajab AM, Khalifa MA, Almazrou A, Saquib N. Internet addiction in Gulf countries: A systematic review and meta-analysis. J Behav Addict. 2021;10(3):601–610. https://doi.org/10.1556/2006.2021.00057.

44. Aparicio-Martínez P, Ruiz-Rubio M, Perea-Moreno AJ, Martínez-Jiménez MP, Pagliari C, Redel-Macías MD, Vaquero-Abellán M. Gender differences in the addiction to social networks in the Southern Spanish university students. Telemat Inform. 2019;46:101304. https://doi.org/10.1016/j.tele.2019.101304.

45. Schou Andreassen C, Billieux J, Griffiths MD, Kuss DJ, Demetrovics Z, Mazzoni E, Pallesen S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: A largescale cross-sectional study. Psychol Addict Behav. 2016;30(2):252–262. https://doi.org/10.1037/adb0000160.

46. Reer F, Festl R, Quandt T. Investigating problematic social media and game use in a nationally representative sample of adolescents and younger adults. Behav Inform Technol. 2021;40(8):776–789. Available at: https://ideas.repec.org/a/taf/tbitxx/v40y2021i8p776-789.html.


Review

For citations:


Tereshchenko SY, Evert LS, Kostyuchenko YR. Validation of the Russian version of the Social Media Disorder Scale (SMDS) questionnaire in adolescents. Meditsinskiy sovet = Medical Council. 2024;(1):302–311. (In Russ.) https://doi.org/10.21518/ms2023-491

Views: 478


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)