Амбулаторное ведение пациентов с сосудистыми когнитивными нарушениями
https://doi.org/10.21518/ms2024-311
Аннотация
Возрастные когнитивные нарушения являются одной из основных проблем общественного здравоохранения нашего времени. Сосудистые когнитивные нарушения включают весь спектр когнитивных нарушений, начиная от клинически легких, которые проявляются только при когнитивном тестировании, и заканчивая умеренными и выраженными, доходящими до степени деменции. Сосудистые когнитивные нарушения определяют весь спектр неврологических расстройств, вызванных сосудистыми заболеваниями головного мозга. Неврология когнитивных нарушений в более позднем возрасте часто представляет собой смесь сосудистой патологии, болезни Альцгеймера и других нейродегенеративных заболеваний, которые накладываются друг на друга и увеличивают риск развития когнитивных нарушений. Когнитивные нарушения проявляются в прогрессирующей потере способностей к обучению, ухудшению памяти и внимания, что приводит к росту зависимости и социальной изоляции. Цереброваскулярные факторы риска распространены среди пожилых людей и являются основными факторами, способствующими развитию сосудистых когнитивных нарушений. К наиболее распространенным сосудистым факторам риска относят артериальную гипертензию, высокий уровень холестерина, сахарный диабет и курение, которые широко встречаются в популяции. Основными причинами сосудистых когнитивных нарушений считаются острые нарушения мозгового кровообращения, немые (бессимптомные) инфаркты и микрокровоизлияния в сочетании с изменением структуры и плотности белого вещества или без них. Церебральная болезнь мелких сосудов является одной из наиболее актуальных из-за ее влияния с точки зрения социально-экономического бремени. Определение вклада сосудистых заболеваний в развитие сосудистых когнитивных нарушений значительно облегчается с использованием нейровизуализации, в частности магнитно-резонансной томографии. В настоящее время не существует специфических методов лечения сосудистых когнитивных нарушений, но рекомендуются стандартные меры профилактики инсульта. Мультимодальные вмешательства, включающие модификацию сосудистых факторов риска и образа жизни, в настоящее время являются наиболее перспективной стратегией лечения и профилактики. Холинергические предшественники были одними из первых соединений, использованных для лечения когнитивных нарушений.
Об авторах
Н. В. ПизоваРоссия
Пизова Наталия Вячеславовна, д.м.н., профессор кафедры нервных болезней с медицинской генетикой и нейрохирургией
150000, Ярославль, ул. Революционная, д. 5
А. В. Пизов
Россия
Пизов Александр Витальевич, к.б.н., доцент кафедры медицины
150000, Ярославль, ул. Республиканская, д. 108/1
Список литературы
1. Sagaro GG, Traini E, Amenta F. Activity of Choline Alphoscerate on Adult-Onset Cognitive Dysfunctions: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2023;92(1):59–70. https://doi.org/10.3233/jad-221189.
2. Crimmins EM, Kim JK, Langa KM, Weir DR. Assessment of cognition using surveys and neuropsychological assessment: the Health and Retirement Study and the Aging, Demographics, and Memory Study. J Gerontol B Psychol Sci Soc Sci. 2011;66(1 Suppl.):i162–171. https://doi.org/10.1093/geronb/gbr048.
3. Jia L, Du Y, Chu L, Zhang Z, Li F, Lyu D et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health. 2020;5(12):e661–e671. https://doi.org/10.1016/S2468-2667(20)30185-7.
4. Nelson ME, Jester DJ, Petkus AJ, Andel R. Cognitive Reserve, Alzheimer’s Neuropathology, and Risk of Dementia: A Systematic Review and Meta-Analysis. Neuropsychol Rev. 2021;31(2):233–250. https://doi.org/10.1007/s11065-021-09478-4.
5. Chertkow H. Diagnosis and treatment of dementia: introduction. Introducing a series based on the Third Canadian Consensus Conference on the Diagnosis and Treatment of Dementia. CMAJ. 2008;178(3):316–321. https://doi.org/10.1503/cmaj.070795.
6. Busse A, Angermeyer MC, Riedel-Heller SG. Progression of mild cognitive impairment to dementia: a challenge to current thinking. Br J Psychiatry. 2006;189(5):399–404. https://doi.org/10.1192/bjp.bp.105.014779.
7. Roh JH, Lee JH. Recent updates on subcortical ischemic vascular dementia. J Stroke. 2014;16(1):18–26. https://doi.org/10.5853/jos.2014.16.1.18.
8. Parra MA, Butler S, McGeown WJ, Brown Nicholls LA, Robertson DJ. Globalising strategies to meet global challenges: the case of ageing and dementia. J Glob Health. 2019;9(2):020310. https://doi.org/10.7189/jogh.09.020310.
9. Ardelt M. Are Older Adults Wiser Than College Students? A Comparison of Two Age Cohorts. J Adult Dev. 2010;17:193–207. https://doi.org/10.1007/s10804-009-9088-5.
10. Park DC, Lautenschlager G, Hedden T, Davidson NS, Smith AD, Smith PK. Models of visuospatial and verbal memory across the adult life span. Psychol Aging. 2002;17(2):299–320. https://doi.org/10.1037/0882-7974.17.2.299.
11. Johnson W, Logie RH, Brockmole JR.Working memory tasks differ in factor structure across age cohorts: Implications for dedifferentiation. Intelligence. 2010;38(5):513–528. https://doi.org/10.1016/j.intell.2010.06.005.
12. Salthouse TA. Trajectories of normal cognitive aging. Psychol Aging. 2019;34(1):17–24. https://doi.org/10.1037/pag0000288.
13. Fitzpatrick AL, Kuller LH, Ives DG, Lopez OL, Jagust W, Breitner JC et al. Incidence and prevalence of dementia in the Cardiovascular Health Study. J Am Geriatr Soc. 2004;52(2):195–204. https://doi.org/10.1111/j.1532-5415.2004.52058.x
14. Wolf PA. Contributions of the Framingham Heart Study to stroke and dementia epidemiologic research at 60 years. Arch Neurol. 2012;69(5):567–571. https://doi.org/10.1001/archneurol.2011.977.
15. Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005;64(2):277–281. https://doi.org/10.1212/01.WNL.0000149519.47454.F2.
16. Dichgans M, Leys D. Vascular Cognitive Impairment. Circ Res. 2017;120(3):573–591. https://doi.org/10.1161/CIRCRESAHA.116.308426.
17. Caruso P, Signori R, Moretti R. Small vessel disease to subcortical dementia: a dynamic model, which interfaces aging, cholinergic dysregulation and the neurovascular unit. Vasc Health Risk Manag. 2019;15:259–281. https://doi.org/10.2147/VHRM.S190470.
18. Rundek T, Tolea M, Ariko T, Fagerli EA, Camargo CJ. Vascular Cognitive Impairment (VCI). Neurotherapeutics. 2022;19(1):68–88. https://doi.org/10.1007/s13311-021-01170-y.
19. Zlokovic BV, Gottesman RF, Bernstein KE, Seshadri S, McKee A, Snyder H et al. Vascular contributions to cognitive impairment and dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National Institute of Neurological Disorders and Stroke Workshop. Alzheimers Dement. 2020;16(12):1714–1733. https://doi.org/10.1002/alz.12157.
20. Iadecola C. The pathobiology of vascular dementia. Neuron. 2013;80(4):844–866. https://doi.org/10.1016/j.neuron.2013.10.008.
21. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197–2204. https://doi.org/10.1212/01.wnl.0000271090.28148.24.
22. Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011;14(6):724–738. https://doi.org/10.1016/j.cmet.2011.08.016.
23. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017;312(1):H1–H20. https://doi.org/10.1152/ajpheart.00581.2016.
24. Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond). 2017;131(19):2451–2468. https://doi.org/10.1042/CS20160727.
25. Park JH, Hong JH, Lee SW, Ji HD, Jung JA, Yoon KW et al. The effect of chronic cerebral hypoperfusion on the pathology of Alzheimer’s disease: A positron emission tomography study in rats. Sci Rep. 2019;9(1):14102. https://doi.org/10.1038/s41598-019-50681-4.
26. Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw FE et al. Neuroimaging standards for research into small vessel diseaseadvances since 2013. Lancet Neurol. 2023;22(7):602–618. https://doi.org/10.1016/S1474-4422(23)00131-X.
27. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–838. https://doi.org/10.1016/S1474-4422(13)70124-8.
28. LADIS Study Group. 2001–2011: a decade of the LADIS (Leukoaraiosis And DISability) Study: what have we learned about white matter changes and small-vessel disease? Cerebrovasc Dis. 2011;32(6):577–588. https://doi.org/10.1159/000334498.
29. Lei C, Deng Q, Li H, Zhong L. Association Between Silent Brain Infarcts and Cognitive Function: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis. 2019;28(9):2376–2387. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.03.036.
30. Qiu C, Cotch MF, Sigurdsson S, Jonsson PV, Jonsdottir MK, Sveinbjrnsdottir S et al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik Study. Neurology. 2010;75(24):2221–2228. https://doi.org/10.1212/WNL.0b013e3182020349.
31. Hachinski VC, Lassen NA, Marshall J. Multi-infarct dementia. A cause of mental deterioration in the elderly. Lancet. 1974;304(7874):207–210. https://doi.org/10.1016/s0140-6736(74)91496-2.
32. Graff-Radford J. Vascular Cognitive Impairment. Continuum (Minneap Minn). 2019;25(1):147–164. https://doi.org/10.1212/CON.0000000000000684.
33. Sonnen JA, Larson EB, Crane PK, Haneuse S, Li G, Schellenberg GD et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol. 2007;62(4):406–413. https://doi.org/10.1002/ana.21208.
34. Tatemichi TK, Desmond DW, Prohovnik I. Strategic infarcts in vascular dementia. A clinical and brain imaging experience. Arzneimittelforschung. 1995;45(3A):371–385. Available at: https://pubmed.ncbi.nlm.nih.gov/7763329/.
35. Biesbroek JM, Kuijf HJ, van der Graaf Y, Vincken KL, Postma A, Mali WP et al. Association between subcortical vascular lesion location and cognition: a voxel-based and tract-based lesion-symptom mapping study. The SMART-MR study. PLoS ONE. 2013;8(4):e60541. https://doi.org/10.1371/journal.pone.0060541.
36. Benedictus MR, Hochart A, Rossi C, Boulouis G, Hénon H, van der Flier WM, Cordonnier C. Prognostic Factors for Cognitive Decline After Intracerebral Hemorrhage. Stroke. 2015;46(10):2773–2778. https://doi.org/10.1161/STROKEAHA.115.010200.
37. Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain. 2007;130(8):1988–2003. https://doi.org/10.1093/brain/awl387.
38. Захаров ВВ. Диагностика и лечение сосудистых когнитивных нарушений. Клиницист. 2023;17(3):12–21. https://doi.org/10.17650/1818-8338-2023-17-3-K694.
39. Molad J, Kliper E, Korczyn AD, Ben Assayag E, Ben Bashat D, ShenharTsarfaty S e al. Only White Matter Hyperintensities Predicts Post-Stroke Cognitive Performances Among Cerebral Small Vessel Disease Markers: Results from the TABASCO Study. J Alzheimers Dis. 2017;56(4):1293–1299. https://doi.org/10.3233/JAD-160939.
40. Rasquin SM, Verhey FR, van Oostenbrugge RJ, Lousberg R, Lodder J. Demographic and CT scan features related to cognitive impairment in the first year after stroke. J Neurol Neurosurg Psychiatry. 2004;75(11):1562–1567. https://doi.org/10.1136/jnnp.2003.024190.
41. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666. https://doi.org/10.1136/bmj.c3666.
42. Au R, Massaro JM, Wolf PA, Young ME, Beiser A, Seshadri S et al. Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham Heart Study. Arch Neurol. 2006;63(2):246–250. https://doi.org/10.1001/archneur.63.2.246.
43. Wright CB, Festa JR, Paik MC, Schmiedigen A, Brown TR, Yoshita M et al. White matter hyperintensities and subclinical infarction: associations with psychomotor speed and cognitive flexibility. Stroke. 2008;39(3):800–805. https://doi.org/10.1161/STROKEAHA.107.484147.
44. Leary MC, Saver JL. Annual incidence of first silent stroke in the United States: a preliminary estimate. Cerebrovasc Dis. 2003;16(3):280–285. https://doi.org/10.1159/000071128.
45. Smith EE, Saposnik G, Biessels GJ, Doubal FN, Fornage M, Gorelick PB et al. Prevention of Stroke in Patients With Silent Cerebrovascular Disease: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2017;48(2):e44–e71. https://doi.org/10.1161/STR.0000000000000116.
46. Chojdak-Łukasiewicz J, Dziadkowiak E, Zimny A, Paradowski B. Cerebral small vessel disease: A review. Adv Clin Exp Med. 2021;30(3):349–356. https://doi.org/10.17219/acem/131216.
47. Wen W, Sachdev PS, Li JJ, Chen X, Anstey KJ. White matter hyperintensities in the forties: their prevalence and topography in an epidemiological sample aged 44–48. Hum Brain Mapp. 2009;30(4):1155–1167. https://doi.org/10.1002/hbm.20586.
48. De Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70(1):9–14. https://doi.org/10.1136/jnnp.70.1.9.
49. Zanon Zotin MC, Sveikata L, Viswanathan A, Yilmaz P. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr Opin Neurol. 2021;34(2):246–257. https://doi.org/10.1097/WCO.0000000000000913.
50. O’Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L et al. Vascular cognitive impairment. Lancet Neurol. 2003;2(2):89–98. https://doi.org/10.1016/s1474-4422(03)00305-3.
51. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701. https://doi.org/10.1016/S1474-4422(10)70104-6.
52. Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–696. https://doi.org/10.1016/S1474-4422(19)30079-1.
53. Staals J, Makin SD, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology. 2014;83(14):1228–1234. https://doi.org/10.1212/WNL.0000000000000837.
54. Xu X, Hilal S, Collinson SL, Chong EJ, Ikram MK, Venketasubramanian N, Chen CL. Association of Magnetic Resonance Imaging Markers of Cerebrovascular Disease Burden and Cognition. Stroke. 2015;46(10):2808–2814. https://doi.org/10.1161/STROKEAHA.115.010700.
55. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32(12):2735–2740. https://doi.org/10.1161/hs1201.100209.
56. Sachdev P, Kalaria R, O’Brien J, Skoog I, Alladi S, Black SE et al. Diagnostic criteria for vascular cognitive disorders: a VASCOG statement. Alzheimer Dis Assoc Disord. 2014;28(3):206–218. https://doi.org/10.1097/WAD.0000000000000034.
57. Litak J, Mazurek M, Kulesza B, Szmygin P, Litak J, Kamieniak P, Grochowski C. Cerebral Small Vessel Disease. Int J Mol Sci. 2020;21(24):9729. https://doi.org/10.3390/ijms21249729.
58. Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA et al. Brain arteriolosclerosis. Acta Neuropathol. 2021;141(1):1–24. https://doi.org/10.1007/s00401-020-02235-6.
59. Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease – one peptide, two pathways. Nat Rev Neurol. 2020;16(1):30–42. https://doi.org/10.1038/s41582-019-0281-2.
60. Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res. 2024.https://doi.org/10.1016/j.jare.2024.01.001.
61. Greenberg SM, Gurol ME, Rosand J, Smith EE. Amyloid angiopathy-related vascular cognitive impairment. Stroke. 2004;35(11 Suppl. 1):2616–2619. https://doi.org/10.1161/01.STR.0000143224.36527.44.
62. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A et al. Association of HTRA1 mutations and familial ischemic cerebral smallvessel disease. N Engl J Med. 2009;360(17):1729–1739. https://doi.org/10.1056/NEJMoa0801560.
63. Chabriat H, Bousser MG. Neuropsychiatric manifestations in CADASIL. Dialogues Clin Neurosci. 2007;9(2):199–208. https://doi.org/10.31887/DCNS.2007.9.2/hchabriat.
64. Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L et al. CADASIL and CARASIL. Brain Pathol. 2014;24(5):525–544. https://doi.org/10.1111/bpa.12181.
65. Forette F, Seux ML, Staessen JA, Thijs L, Babarskiene MR, Babeanu S et al. The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med. 2002;162(18):2046–2052. https://doi.org/10.1001/archinte.162.18.2046.
66. Williamson JD, Pajewski NM, Auchus AP, Bryan RN, Chelune G, Cheung AK et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019;321(6):553–561. https://doi.org/10.1001/jama.2018.21442.
67. Nasrallah IM, Pajewski NM, Auchus AP, Chelune G, Cheung AK, Cleveland ML et al. Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions. JAMA. 2019;322(6):524–534. https://doi.org/10.1001/jama.2019.10551.
68. Dufouil C, Chalmers J, Coskun O, Besançon V, Bousser MG, Guillon P et al. Effects of blood pressure lowering on cerebral white matter hyperintensities in patients with stroke: the PROGRESS (Perindopril Protection Against Recurrent Stroke Study) Magnetic Resonance Imaging Substudy. Circulation. 2005;112(11):1644–1650. https://doi.org/10.1161/CIRCULATIONAHA.104.501163.
69. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging – Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–279. https://doi.org/10.1016/j.jalz.2011.03.008.
70. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2011;42(9):2672–2713. https://doi.org/10.1161/STR.0b013e3182299496.
71. Traini E, Bramanti V, Amenta F. Choline alphoscerate (alpha-glycerylphosphoryl-choline) an old choline-containing phospholipid with a still interesting profile as cognition enhancing agent. Curr Alzheimer Res. 2013;10(10):1070–1079. https://doi.org/10.2174/15672050113106660173.
72. Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006;16(6):710–715. https://doi.org/10.1016/j.conb.2006.09.002.
73. Parnetti L, Amenta F, Gallai V. Choline alphoscerate in cognitive decline and in acute cerebrovascular disease: an analysis of published clinical data. Mech Ageing Dev. 2001;122(16):2041–2055. https://doi.org/10.1016/s0047-6374(01)00312-8.
74. Романова ИС, Кожанова ИН, Чак ТА. Холина альфосцерат в лечении неврологических нарушений. Здравоохранение (Минск). 2022;(10):52–59. Режим доступа: https://www.elibrary.ru/ioxwwb.
75. Ajenikoko MK, Ajagbe AO, Onigbinde OA, Okesina AA, Tijani AA. Review of Alzheimer’s disease drugs and their relationship with neuron-glia interaction. IBRO Neurosci Rep. 2022;14:64–76. https://doi.org/10.1016/j.ibneur.2022.11.005.
76. Yu JH, Kim LY, Kim JM, Park MJ, Park YS, Park NS, Yang WD. The effect of choline alphoscerate on non spatial memory and neuronal differentiation in a rat model of dual stress. Brain Res. 2022;1786:147900. https://doi.org/10.1016/j.brainres.2022.147900.
77. Barbagallo Sangiorgi G, Barbagallo M, Giordano M, Meli M, Panzarasa R. α-Glycerophosphocholine in the mental recovery of cerebral ischemic attacks. An Italian multicenter clinical trial. Ann N Y Acad Sci. 1994;717(1):253–269. https://doi.org/10.1111/j.1749-6632.1994.tb12095.x.
78. Di Perri R, Coppola G, Ambrosio LA, Grasso A, Puca FM, Rizzo M. A multicentre trial to evaluate the efficacy and tolerability of alphaglycerylphosphorylcholine versus cytosine diphosphocholine in patients with vascular dementia. J Int Med Res. 1991;19(4):330–341. https://doi.org/10.1177/030006059101900406.
79. Румянцева СА, Кравчук АА, Рыжова ДД. Терапия когнитивных расстройств у больных хронической ишемией головного мозга. РМЖ. 2007;(5):379–383. Режим доступа: https://www.rmj.ru/articles/nevrologiya/Terapiya_kognitivnyh_rasstroystv_u_bolynyh_hronicheskoy_ishemiey_golovnogo_mozga/.
80. Менделевич ЕГ, Сурженко ИЛ, Дунин ДН, Богданов ЭИ. Церетон в лечении когнитивных нарушений у больных дисциркуляторной и посттравматической энцефалопатией. РМЖ. 2009;(5):382–387. Режим доступа: https://www.rmj.ru/articles/nevrologiya/Cereton_v_lechenii_kognitivnyh_narusheniy__u_bolynyh_discirkulyatornoy_i_posttravmaticheskoy_encefalopatiey/.
81. Соловьева АВ, Чичановская ЛВ, Бахарева ОН, Брянцева МВ. Изучение эффективности препарата Церетон в лечении больных пожилого возраста, страдающих хронической ишемией головного мозга. РМЖ. 2009;(23):1522–1525. Режим доступа: https://www.rmj.ru/articles/nevrologiya/Izuchenie_effektivnosti_preparata_Cereton__v_lechenii_bolynyh_poghilogo_vozrasta__stradayuschih_hronicheskoy_ishemiey_golovnogo_mozga/.
82. Батышева ТТ, Нестерова ОС, Отческая ОВ, Хозова АА, Зайцев КС, Камчатнов ПР, Бойко АН. Применение Церетона у больных с умеренными когнитивными расстройствами сосудистого генеза. Трудный пациент. 2009;7(4-5):10–12. Режим доступа: https://www.elibrary.ru/ogaixn.
83. Traini E, Carotenuto A, Fasanaro AM, Amenta F. Volume Analysis of Brain Cognitive Areas in Alzheimer’s Disease: Interim 3-Year Results from the ASCOMALVA Trial. J Alzheimers Dis. 2020;76(1):317–329. https://doi.org/10.3233/jad-190623.
84. Levin OS, Batukaeva LA, Anikina MA, Yunishchenko NA. Efficacy and safety of choline alphoscerate (cereton) in patients with Parkinson’s disease with cognitive impairments. Neurosci Behav Physiol. 2011;4:47–51. https://doi.org/10.1007/s11055-010-9377-2.
85. Salvadori E, Poggesi A, Donnini I, Rinnoci V, Chiti G, Squitieri M et al. Efficacy and Safety of the Association of Nimodipine and Choline Alphoscerate in the Treatment of Cognitive Impairment in Patients with Cerebral Small Vessel Disease. The CONIVaD Trial. Drugs Aging. 2021;38(6):481–491. https://doi.org/10.1007/s40266-021-00852-8
Рецензия
Для цитирования:
Пизова НВ, Пизов АВ. Амбулаторное ведение пациентов с сосудистыми когнитивными нарушениями. Медицинский Совет. 2024;(12):31–38. https://doi.org/10.21518/ms2024-311
For citation:
Pizova NV, Pizov AV. Outpatient management of patients with vascular cognitive impairment. Meditsinskiy sovet = Medical Council. 2024;(12):31–38. (In Russ.) https://doi.org/10.21518/ms2024-311