Prediction of restrictive ventilation disorders after COVID-19
https://doi.org/10.21518/ms2024-417
Abstract
Introduction. The effect of SARS-COV-2 on the lung function remains relevant at the present time.
Aim. Determination of the most important predictors of the restrictive ventilation disorder after COVID-19.
Materials and methods. The retrospective study included 341 patients without underlying lung diseases (median age 48 years) survivors after COVID-19 with bilateral pneumonia. The median of the greatest extent of parenchymal involvement in the acute phase of COVID-19 (CTmax) was 50%. Spirometry, body plethysmography, and diffusion test were performed. Descriptive statistics, correlation analysis, one-dimensional logistic regression analysis with an assessment of odds ratios (OR) and multivariate logistic regression analysis were applied. ROC analysis was used to assess the quality of the binary classifier model.
Results. The initial model for predicting reduced total lung capacity (TLC) (criterion 1: TLC < 80% predicted, criterion 2: TLC<predicted-1.645SD) included predictors: CTmax, time interval from the COVID-19 onset (TI), gender, age, body mass index. Backward stepwise regression was applied and a binary classifier model that includes CTmax and TI was obtained. Applying criterion 1 for reducing TLC, the sensitivity and specificity of the model were 70,5% and 89.3%, respectively, and criterion 2 - 96.6% and 67.3%, respectively. The analysis of OR for the obtained binary classifier models showed that OR>1 is observed at CTmax > 70%.
Conclusions. The restrictive ventilation disorder after COVID-19 is caused by CTmax and TI. The risk of reducing TLC after COVID-19 increases significantly with CTmax 70% or more. The criterion of the low level of normal of TLC affects the sensitivity and specificity of the obtained models.
Keywords
About the Authors
O. I. SavushkinaRussian Federation
Olga I. Savushkina - Cand. Sci. (Biol.), Head of the Department of Lung Function Testing, Center of Functional Diagnostic Investigations, Main Military Clinical Hospital named after Academician N.N. Burdenko; Senior Scientist of the Laboratory of Functional and Ultrasonic Research Methods, Research Institute for Pulmonology of the Federal Medical Biological Agency.
3, Gospitalnaya Square, Moscow, 105094; 8, Orekhovy Boulevard, Moscow, 115682
E. S. Muravyeva
Russian Federation
Elena S. Muravyeva - Cand. Sci. (Biol.), Associate Professor of Bioinformatics Department, Medical Biological Faculty, Pirogov Russian National Research Medical University.
1, Ostrovityanov St., Moscow, 117997
S. N. Avdeev
Russian Federation
Sergey N. Avdeev - Acad. RAS, Dr. Sci. (Med.), Head of Pulmonology Department, General Medicine Faculty, Sechenov First Moscow State Medical University (Sechenov University).
8, Bldg. 2, Trubetskaya St., Moscow, 119991
A. A. Zaitsev
Russian Federation
Andrey A. Zaitsev - Dr. Sci. (Med.), Professor, Chief Pulmonologist, Main Military Clinical Hospital named after Academician N.N. Burdenko; Head of the Department of Pulmonology (with a course in Allergology), Russian Biotechnological University.
3, Gospitalnaya Square, Moscow, 105094; 11, Volokolamskoe Shosse, Moscow, 125080
G. N. Nekludova
Russian Federation
Galina V. Nekludova - Dr. Sci. (Med.), Professor, Department of Pulmonology, Institute of Clinical Medicine named after N.V. Sklifosovsky, Sechenov First Moscow State Medical University (Sechenov University).
8, Bldg. 2, Trubetskaya St., Moscow, 119991
E. V. Kryukov
Russian Federation
Evgeniy V. Kryukov - Acad. RAS, Dr. Sci. (Med.), Professor, Chief, Military Medical Academy named after S.M. Kirov.
6, Akademik Lebedev St., St Petersburg, 194044
References
1. Antoniou KM, Vasarmidi E, Russell AM, Andrejak C, Crestani B, Delcroix M et al. European Respiratory Society statement on long COVID follow-up. Eur Respir J. 2022;60(2):2102174. https://doi.org/10.1183/13993003.02174-2021.
2. Savushkina OI, Muravieva ES, Avdeev SN, Kulagina ITs, Malashenko MM, Zaytsev AA. Analysis of Respiratory System Functional Parameters at Different Time Points after COVID-19. Tuberculosis and Lung Diseases. 2023;101(6):42-49. (In Russ.) https://doi.org/10.58838/2075-1230-2023-101-6-42-49.
3. Abdullaeva GB, Avdeev SN, Fominykh EV, Gordina GS, Mustafina MKh. Assessment of long-term clinical and functional changes in patients recovering from severe COVID-19-associated lung damage. Pulmonologiya. 2023;33(4): 461-471. (In Russ.) https://doi.org/10.18093/0869-0189-2023-33-4-461-471.
4. Karchevskaya NA, Skorobogach IM, Cherniak AV, Migunova EV, Leshchinskaya OV, Kalmanova EN et al. Long-term follow-up study of post-COVID-19 patients. Terapevticheskii Arkhiv. 2022;94(3):378-388. (In Russ.) https://doi.org/10.26442/00403660.2022.03.201399.
5. Faverio P, Paciocco G, Tassistro E, Rebora P, Rossi E, Monzani A. et al. Two-year cardio-pulmonary follow-up after severe COVID-19: a prospective study. Intern Emerg Med. 2024;l9(1):183-190. https//doi.org/10.1007/s11739-023-03400-x.
6. Ajsanov ZR, Kalmanova EN, Kameneva MJu, Kirjuhina LD, Lukina OF, Naumenko ZhK et al. The Russian Respiratory Society guidelines for pulmonary function testing during the COVID-19 pandemic. Version 1.1, 19.05.2020. Prakticheskaya Pul'monologiya.2020;(1):104-107. (In Russ.) Available at: https://atmosphere-ph.ru/modules/Magazines/articles//pulmo/pp_1_2020_104.pdf.
7. Kameneva MYu, Savushkina OI, Cherniak AV. Current recommendations for pulmonary function testing during the COVID-19 pandemic. Medical Alphabet. 2020;1(14):5-8. (In Russ.) https//doi.org/10.33667/2078-5631-2020-14-5-8.
8. Savushkina OI, Astanin PA, Kryukov EV, Zaicev AA. Prediction of pulmonary gas exchange disorders in patients with long-term COVID-19 using machine learning methods. Bulletin Physiology and Pathology of Respiration. 2023;(87):18-28. (In Russ.) https//doi.org/10.36604/1998-5029-2023-87-18-28.
9. Kameneva MYu, Cherniak AV, Aisanov ZR, Avdeev SN, Babak SL, Belevskiy AS et al. Spirometry: national guidelines for the testing and interpretation of results Interregional Public Organization “Russian Respiratory Society” All-Russian Public Organization “Russian Association of Specialists in Functional Diagnostics” All-Russian Public Organization “Russian Scientific Medical Society of Therapists”. Pulmonologiya. 2023;33(3):307-340. (In Russ.) https://doi.org/10.18093/08690189-2023-33-3-307-340.
10. Wanger J,Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511-522. https//doi.org/10.1183/09031936.05.00035005.
11. Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A et al. 2017 ERS/ATS Standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49(1):1600016. https//doi.org/10.1183/13993003.00016-2016.
12. Quanjer PhH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault J-C. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:5-40. Available at: https://pubmed.ncbi.nlm.nih.gov/8499054/.
13. Cotes JE, Chinn DJ, Quanjer PH, Roca J, Yernault JC. Standardization of the measurement of transfer factor (diffusing capacity). Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:41-52. Available at: https://pubmed.ncbi.nlm.nih.gov/8499053/.
14. American ThoracicSociety. Evaluation of impairment/disability secondary to respiratory disorders. Am Rev Respir Dis. 1986;133(6):1205-1209. https://doi.org/10.1164/arrd.1986.133.6.1205.
15. Скэнлон ПД, Хайатт РЕ. Интерпретация результатов легочных функциональных тестов. М.: Гэотар-Медиа; 2023. 312 c. Режим доступа: https://medlib.kuzdrav.ru/articles/26/9087.
16. Pellegrino R,Viegi G,Brusasco V, Crapo RO, Burgos F, Casaburi R et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948-968. https://doi.org/10.1183/09031936.05.00035205.
17. Stanojevic S,Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022;60(1):2101499. https://doi.org/10.1183/13993003.01499-2021.
18. Savushkina OI, Chernyak AV. Theoretical and methodological aspects of body plethysmography and clinical application. Bulletin Physiology and Pathology of Respiration. 2016;(60):117-124. (In Russ.) https://doi.org/10.12737/20131.
19. Samoilova EV, Fatova MA, Mindzaev DR, Zhitareva IV, Nasonova CN, Zhirov IV et al. Decision rule for stratification of patients with chronic heart failure of functional class II and III. Bulletin of Siberian Medicine. 2020;19(1):101-107. (in Russ.) https://doi.org/10.20538/1682-0363-2020-1-101-107.
20. Nahm FS.Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol. 2022;75(1):25-36. https://doi.org/10.4097/kja.21209.
21. Trebach J, Su MK. Biostatistics and Epidemiology for the Toxicologist: Rock the ROC Curve. J Med Toxicol. 2022;18(2):163-167. https://doi.org/10.1007/s13181-022-00879-2.
22. Garrafa E,Vezzoli M, Ravanelli M, Farina D, Borghesi A, Calza S, Maroldi R. Early prediction of in-hospital death of COVID-19 patients: a machine-learning model based on age, blood analyses, and chest x-ray score. Elife. 2021;10:e70640. https://doi.org/10.7554/eLife.70640.
23. Talko AV, Nevzorova VA, Ermolitskaya MZ, Bondareva Zh V. The possibilities of data mining methods for assessing the outcomes of COVID-19 in patients with diseases of the blood system. Bulletin Physiology and Pathology of Respiration. 2023;(88):50-58. (In Russ.) https://doi.org/10.36604/1998-5029-2023-88-50-58.
24. Qin W, Chen S, Zhang Y, Dong F, Zhang Z, Hu B et al. Diffusion capacity abnormalities for carbon monoxide in patients with COVID-19 at 3-month follow-up. Eur Respir J. 2021;58(1):2003677. https://doi.org/10.1183/13993003.03677-2020.
25. Kostycheva TV, Pershukova TN, Bikeikin AV. Long - term consequences of viral lung damage against the background of COVID-19 in military personnel. Military Medical Journal. 2024;345(2):44-49. (In Russ.) Available at: https://medj.rucml.ru/journal/45562d5255534d494c4d45442d41525449434c452d363237333530.
26. Tyurin IE, Strutynskaya AD. Imaging of lung pathology in COVID-19 (literature review and own data). Pulmonologiya. 2020;30(5):658-670. (In Russ.) https://doi.org/10.18093/0869-0189-2020-30-5-658-670.
Review
For citations:
Savushkina OI, Muravyeva ES, Avdeev SN, Zaitsev AA, Nekludova GN, Kryukov EV. Prediction of restrictive ventilation disorders after COVID-19. Meditsinskiy sovet = Medical Council. 2024;(20):124-131. (In Russ.) https://doi.org/10.21518/ms2024-417