Changes in echocardiography in patients with high cardiovascular risk and hyperglycemia in the post-COVID period
https://doi.org/10.21518/ms2025-033
Abstract
Introduction. The SARS-CoV-2 virus damages cardiomyocytes both in acute disease and in the post-COVID period. Patients with high cardiovascular risk and hyperglycemia often have complications after COVID-19. The study of the consequences of SARS- CoV-2 in patients with high cardiovascular risk and hyperglycemia is important today.
Aim. To study myocardial changes according to echocardiography and electrocardiography data in patients with high cardiovascular risk with hyperglycemia in the post-COVID period.
Materials and methods. The study included 206 patients with high cardiovascular risk who had COVID-19 pneumonia in 2020– 2021 and were observed at the Tyumen Cardiology Research Center. Of which 62 patients with hyperglycemia – prediabetes and diabetes mellitus. All patients had anamnesis, anthropometric data, blood pressure, heart rate were measured, ECG and EchoCG were performed.
Results. Patients with high cardiovascular risk and hyperglycemia had higher values of left atrial (LA) size, end-diastolic volume and end-systolic volume of the LA after 3 and 12 months of observation. After 3 and 12 months of post-COVID dynamic observation, the LA volume index increased in patients with hyperglycemia. The level of Hb1AС in 12 months after COVID-19 had a noticeable correlation with the LA systolic and diastolic volume indices and left ventricle (LV) myocardial mass index. ECG parameters did not have difference between groups after 12 months of observation.
Conclusion. In patients with hyperglycemia, after COVID-19, the most significant were the LA systolic and diastolic volumes indices, as well as the LV myocardial mass index.
About the Authors
I. N. RedkinaRussian Federation
Irina N. Redkina, Endocrinologist, Postgraduate Student of the Department of Therapy with a Course in Endocrinology; Endocrinologist
54, Odesskaya St., Tyumen, 625023, Russia
111, Melnikaite St., Tyumen, 625026, Russia
L. A. Suplotova
Russian Federation
Lyudmila A. Suplotova, Dr. Sci. (Med.), Professor, Head of the Course in Endocrinology of the Department of Therapy
54, Odesskaya St., Tyumen, 625023, Russia
M. I. Bessonova
Russian Federation
Marina I. Bessonova, Cand. Sci. (Med.), Honored Doctor of the Russian Federation, Director
111, Melnikaite St., Tyumen, 625026, Russia
E. I. Yaroslavskaya
Russian Federation
Elena I. Yaroslavskaya, Dr. Sci. (Med.), Professor, Head of the Laboratory of Instrumental Diagnostics, Educational and Methodological Department, Ultrasound Diagnostics Physician
111, Melnikaite St., Tyumen, 625026, Russia
K. S. Avdeeva
Russian Federation
Ksenia S. Avdeeva, Dr. Sci. (Med.), Head of the Laboratory of Rehabilitation and Prevention of Cardiovascular Diseases
111, Melnikaite St., Tyumen, 625026, Russia
T. I. Petelina
Russian Federation
Tatyana I. Petelina, Dr. Sci. (Med.), Professor of the Department of Educational and Methodological Work, Head of the Laboratory of Clinical Diagnostics and Molecular Genetic Research, Deputy Director for Research
111, Melnikaite St., Tyumen, 625026, Russia
E. P. Gultyaeva
Russian Federation
Elena P. Gultyaeva, Cand. Sci. (Med.), Cardiologist, Head of the Consultative Department, Senior Researcher of the Department of Arterial Hypertension and Coronary Insufficiency
111, Melnikaite St., Tyumen, 625026, Russia
D. A. Romanenko
Russian Federation
Dmitriy A. Romanenko, Resident in the Specialty “Cardiology”, Research Assistant
111, Melnikaite St., Tyumen, 625026, Russia
References
1. Yamaoka-Tojo M. Vascular Endothelial Glycocalyx Damage in COVID-19. Int J Mol Sci. 2020;21(24):9712. https://doi.org/10.3390/ijms21249712.
2. Kersten J, Schellenberg J, Jerg A, Kirsten J, Persch H, Liu Y, Steinacker JM. Strain Echocardiography in Acute COVID-19 and Post-COVID Syndrome: More than Just a Snapshot. Biomedicines. 2023;11(4):1236. https://doi.org/10.3390/biomedicines11041236.
3. Bizjak DA, John L, Matits L, Uhl A, Schulz SVW, Schellenberg J et al. SARS-CoV-2 Altered Hemorheological and Hematological Parameters during OneMonth Observation Period in Critically Ill COVID-19 Patients. Int J Mol Sci. 2022;23(23):15332. https://doi.org/10.3390/ijms232315332.
4. Vollenberg R, Tepasse PR, Ochs K, Floer M, Strauss M, Rennebaum F et al. Indications of Persistent Glycocalyx Damage in Convalescent COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Viruses. 2021;13(11):2324. https://doi.org/10.3390/v13112324.
5. Gaibazzi N, Bergamaschi L, Pizzi C, Tuttolomondo D. Resting global longitudinal strain and stress echocardiography to detect coronary artery disease burden. Eur Heart J Cardiovasc Imaging. 2023;24(5):e86–e88. https://doi.org/10.1093/ehjci/jead046.
6. Altersberger М, Goliasch G, Khafaga M, Schneider M, Cho BA Y, Winkler R et al. Echocardiography and Lung Ultrasound in Long COVID and PostCOVID Syndrome, a Review Document of the Austrian Society of Pneumology and the Austrian Society of Ultrasound in Medicine. J Ultrasound Med. 2023;42(2):269–277. https://doi.org/10.1002/jum.16068.
7. Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, Hyperglycemia, and New-Onset Diabetes. Diabetes Care. 2021;44(12):2645–2655. https://doi.org/10.2337/dc21-1318.
8. Singh AK, Khunti K. COVID-19 and Diabetes. Annu Rev Med. 2022;73:129–147. https://doi.org/10.1146/annurev-med-042220-011857.
9. Tajbakhsh A, Gheibi Hayat SM, Taghizadeh H, Akbari A, Inabadi M, Savardashtaki A et al. COVID-19 and cardiac injury: clinical manifestations, biomarkers, mechanisms, diagnosis, treatment, and follow up. Expert Rev Anti Infect Ther. 2021;19(3):345–357. https://doi.org/10.1080/14787210.2020.1822737.
10. Weckbach LT, Curta A, Bieber S, Kraechan A, Brado J, Hellmuth JC et al. Myocardial inflammation and dysfunction in COVID-19-associated myocardial injury. Circ Cardiovasc Imaging. 2021;14(1):e012220. https://doi.org/10.1161/CIRCIMAGING.120.011713.
11. Rovas A, Osiaevi I, Buscher K, Sackarnd J, Tepasse PR, Fobker M et al. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis. 2021;24(1):145–157. https://doi.org/10.1007/s10456-020-09753-7.
12. Adeghate EA, Eid N, Singh J. Mechanisms of COVID-19-induced heart failure: a short review. Heart Fail Rev. 2021;26(2):363–369. https://doi.org/10.1007/s10741-020-10037-x.
13. Azevedo RB, Botelho BG, Hollanda JVG, Ferreira LVL, Junqueira de Andrade LZ, Oei SSML et al. COVID-19 and the cardiovascular system: a comprehensive review. J Hum Hypertens. 2021;35(1):4–11. https://doi.org/10.1038/s41371-020-0387-4.
14. Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation Period of COVID-19 Caused by Unique SARS-CoV-2 Strains: A Systematic Review and Metaanalysis. JAMA Netw Open. 2022;5(8):e2228008. https://doi.org/10.1001/jamanetworkopen.2022.28008.
15. D’Andrea A, Cante L, Palermi S, Carbone A, Ilardi F, Sabatella F et al. COVID-19 Myocarditis: Prognostic Role of Bedside Speckle-Tracking Echocardiography and Association with Total Scar Burden. Int J Environ Res Public Health. 2022;19(10):5898. https://doi.org/10.3390/ijerph19105898.
16. Iorio A, Lombardi CM, Specchia C, Merlo M, Nuzzi V, Ferraro I et al. Combined Role of Troponin and Natriuretic Peptides Measurements in Patients With COVID-19 (from the Cardio-COVID-Italy Multicenter Study). Am J Cardiol. 2022;167:125–132. https://doi.org/10.1016/j.amjcard.2021.11.054.
17. Adeboye A, Alkhatib D, Butt A, Yedlapati N, Garg N. A Review of the Role of Imaging Modalities in the Evaluation of Viral Myocarditis with a Special Focus on COVID-19-Related Myocarditis. Diagnostics. 2022;12(2):549. https://doi.org/10.3390/diagnostics12020549.
18. Xie Y, Wang L, Li M, Li H, Zhu S, Wang B et al. Biventricular Longitudinal Strain Predict Mortality in COVID-19 Patients. Front Cardiovasc Med. 2021;7:632434. https://doi.org/10.3389/fcvm.2020.632434.
19. Singh A, Addetia K, Maffessanti F, Mor‐Avi V, Lang RM. LA Strain for Categorization of LV Diastolic Dysfunction. JACC Cardiovasc Imaging. 2017;10(7):735–743. https://doi.org/10.1016/j.jcmg.2016.08.014.
20. Frydas A, Morris DA, Belyavskiy E, Radhakrishnan AK, Kropf M, Tadic M et al. Left atrial strain as sensitive marker of left ventricular diastolic dysfunction in heart failure. ESC Heart Fail. 2020;7(4):1956–1965. https://doi.org/10.1002/ehf2.12820.
21. Cameli M, Incampo E, Mondillo S. Left atrial deformation: Useful index for early detection of cardiac damage in chronic mitral regurgitation. Int J Cardiol Heart Vasc. 2017;17:17–22. https://doi.org/10.1016/j.ijcha.2017.08.003.
22. Carpenito M, Fanti D, Mega S, Benfari G, Bono MC, Rossi A et al. The Central Role of Left Atrium in Heart Failure. Front Cardiovasc Med. 2021;8:704762. https://doi.org/10.3389/fcvm.2021.704762.
23. Barman HA, Atici A, Tekin EA, Baycan OF, Alici G, Meric BK et al. Echocardiographic features of patients with COVID-19 infection: a cross-sectional study. Int J Cardiovasc Imaging. 2021;37(3):825–834. https://doi.org/10.1007/s10554-020-02051-9.
24. Hamdy RM, Abdelaziz OH, Shamsseldain HE, Eltrawy HH. Functional outcomes in post COVID-19 patients with persistent dyspnea: multidisciplinary approach. Int J Cardiovasc Imaging. 2023;39(6):1115–1122. https://doi.org/10.1007/s10554-023-02819-9.
25. Ergül E, Özyildiz AG, Emlek N, Özyildiz A, Duman H, Çetin M. Effect of Coronavirus Disease-2019 Infection on Left Atrial Functions. J Cardiovasc Echogr. 2022;32(2):89–94. https://doi.org/10.4103/jcecho.jcecho_83_21.
26. Cau R, Bassareo P, Saba L. Cardiac Involvement in COVID-19-Assessment with Echocardiography and Cardiac Magnetic Resonance Imaging. SN Compr Clin Med. 2020;2(7):845–851. https://doi.org/10.1007/s42399-020-00344-7.
27. Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol. 2008;3:127–155. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151534.
28. Naeem A, Tabassum S, Gill S, Khan MZ, Mumtaz N, Qaiser Q et al. COVID-19 and Cardiovascular Diseases: A Literature Review From Pathogenesis to Diagnosis. Cureus. 2023;15(3):e35658. https://doi.org/10.7759/cureus.35658.
29. Bihan H, Heidar R, Beloeuvre A, Allard L, Ouedraogo E, Tatulashvili S et al. Epicardial adipose tissue and severe Coronavirus Disease 19. Cardiovasc Diabetol. 2021;20(1):147. https://doi.org/10.1186/s12933-021-01329-z.
30. Stavileci B, Özdemir E, Özdemir B, Ereren E, Cengiz M. De-novo development of fragmented QRS during a six-month follow-up period in patients with COVID-19 disease and its cardiac effects. J Electrocardiol. 2022;72:44–48. https://doi.org/10.1016/j.jelectrocard.2022.02.012.
31. Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovasc Electrophysiol. 2020;31(5):1003–1008. https://doi.org/10.1111/jce.14479.
32. Mehraeen E, Seyed Alinaghi SA, Nowroozi A, Dadras O, Alilou S, Shobeiri P et al. A systematic review of ECG findings in patients with COVID-19. Indian Heart J. 2020;72(6):500–507. https://doi.org/10.1016/j.ihj.2020.11.007.
33. Long B, Brady WJ, Bridwell RE, Ramzy M, Montrief T, Singh M, Gottlieb M. Electrocardiographic manifestations of COVID-19. Am J Emerg Med. 2021;41:96–103. https://doi.org/10.1016/j.ajem.2020.12.060.
Review
For citations:
Redkina IN, Suplotova LA, Bessonova MI, Yaroslavskaya EI, Avdeeva KS, Petelina TI, Gultyaeva EP, Romanenko DA. Changes in echocardiography in patients with high cardiovascular risk and hyperglycemia in the post-COVID period. Meditsinskiy sovet = Medical Council. 2025;(6):222-229. (In Russ.) https://doi.org/10.21518/ms2025-033