Preview

Meditsinskiy sovet = Medical Council

Advanced search

Prognostic molecular markers of the biological therapy effectiveness for severe bronchial asthma

https://doi.org/10.21518/ms2025-034

Abstract

Eosinophilic T2 inflammation plays a central role in the pathophysiology of most cases of severe, difficult-to-control asthma. Several monoclonal antibodies are now available that block the signaling pathways of eosinophilic T2 inflammation by binding to specific interleukins or their receptors. In order to select the optimal treatment strategy that ensures effective disease control and adequate quality of life, in addition to accurate asthma pheno-/endotyping, it is necessary to determine biomarkers that predict the effectiveness of biological therapy and disease outcome. New biomarkers are needed to identify those patients who are most likely to respond to biological drugs. The review presents an analysis of scientific publications of recent years devoted to the search for prognostic molecular biomarkers that allow assessing the activation status of eosinophils and determining the choice of a specific biological drug based on the prognosis of the possible outcome of the disease. A systematic search was performed in the electronic databases PubMed, Medline, Web of Science. The possible prognostic role of granular cytotoxic molecules (eosinophil-derived neurotoxin, eosinophil peroxidase, eosinophilic cationic protein) released during degranulation of activated eosinophils as indicators of activation status and predictors of the effectiveness of biological therapy is considered. Analysis of scientific studies shows that the serum level of eosinophil-derived neurotoxin has a quite high prognostic value, the accessible measurement of which in peripheral blood allows identifying a subpopulation of patients with a high activation status of eosinophils and a more severe form of bronchial asthma, and can be considered as a biomarker for determining optimal personalized biological therapy. However, in the absence of evidence-based studies on the usefulness of any given molecular predictor of clinical response to biological therapy, the initial choice of biological agents is determined by the experience and opinions of treating physicians and experts.

About the Authors

O. N. Titova
Research Institute for Pulmonology of the Pavlov First Saint Petersburg State Medical University
Russian Federation

Olga N. Titova, Dr. Sci. (Med.), Professor, Director

6–8, Lev Tolstoy St., St Petersburg, 197022



N. A. Kuzubova
Research Institute for Pulmonology of the Pavlov First Saint Petersburg State Medical University
Russian Federation

Nataliya A. Kuzubova, Dr. Sci. (Med.), Deputy Director of Science

 



E. S. Lebedeva
Research Institute for Pulmonology of the Pavlov First Saint Petersburg State Medical University
Russian Federation

Elena S. Lebedeva, Cand. Sci. (Biol.), Leading Researcher

 



References

1. Brusselle GG, Koppelman GH. Biologic Therapies for Severe Asthma. N Engl J. Med. 2022;386(2):157–171. https://doi.org/10.1056/NEJMra2032506.

2. Chen CY, Wu KH, Guo BC, Lin WY, Chang YJ, Wei CW et al. Personalized Medicine in Severe Asthma: From Biomarkers to Biologics. Int J Mol Sci. 2023;25(1):182. https://doi.org/10.3390/ijms25010182.

3. Pelaia C, Melhorn J, Hinks TS, Couillard S, Vatrella A, Pelaia G, Pavord ID. Type 2 severe asthma: pathophysiology and treatment with biologics. Expert Rev Respir Med. 2024;18(7):485–498. https://doi.org/10.1080/17476348.2024.2380072.

4. Mümmler C, Milger K. Biologics for severe asthma and beyond. Pharmacol Ther. 2023;252:108551. https://doi.org/10.1016/j.pharmthera.2023.108551.

5. Sergeeva GR, Emelyanov AV. Effectiveness and safety of biological therapy in patients with severe asthma in a real clinical practice. Terapevticheskii Arkhiv. 2024;96(3):240–245. (In Russ.) https://doi.org/10.26442/00403660.2024.03.202626.

6. Agache I, Beltran J, Akdis C, Akdis M, Canelo-Aybar C, Canonica GW et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab, mepolizumab, omalizumab and reslizumab) for severe eosin-ophilic asthma. A systematic review for the EAACI Guidelines – recommendations on the use of biologicals in severe asthma. Allergy. 2020;75(5):1023–1042. https://doi.org/10.1111/all.14221.

7. Katsoulis K, Kipourou M, Loukides S. Reduction/elimination of blood eosinophils in severe asthma: Should there be a safety consideration? Expert Opin Biol Ther. 2022;22(3):377–384. https://doi.org/10.1080/14712598.2021.1960977.

8. Hilvering B, Koenderman L. Quality over quantity; eosinophil activation status will deepen the insight into eosinophilic diseases. Respir Med. 2023;207:107094. https://doi.org/10.1016/j.rmed.2022.107094.

9. Wechsler ME, Munitz A, Ackerman SJ, Drake MG, Jackson DJ, Wardlaw AJ et al. Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clin Proc. 2021;96(10):2694–2707. https://doi.org/10.1016/j.mayocp.2021.04.025.

10. Melo RCN, Weller PF. Contemporary understanding of the secretory granules in human eosinophils. J Leukoc Biol. 2018;104(1):85–93. https://doi.org/10.1002/JLB.3MR1217-476R.

11. Nelson RK, Bush A, Stokes J, Nair P, Akuthota P. Eosinophilic Asthma. J Allergy Clin Immunol Pract. 2020;8(2):465–473. https://doi.org/10.1016/j.jaip.2019.11.024.

12. Khoury P, Akuthota P, Ackerman SJ, Arron JR, Bochner BS, Collins MH et al. Revisiting the NIH taskforce on the research needs of eosinophilassociated diseases (RE-TREAD). J Leukoc Biol. 2018;104(1):69–83. https://doi.org/10.1002/JLB.5MR0118-028R.

13. Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D et al. Lungresident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest. 2016;126(9):3279–3295. https://doi.org/10.1172/JCI85664.

14. Guida G, Bagnasco D, Carriero V, Bertolini F, Ricciardolo FLM, Nicola S et al. Critical evaluation of asthma biomarkers in clinical practice. Front Med. 2022;9:969243. https://doi.org/10.3389/fmed.2022.969243.

15. Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A et al. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy. 2019;74(10):1835–1851. https://doi.org/10.1111/all.13806.

16. Porsbjerg CM, Townend J, Bergeron C, Christoff GC, Katsoulotos GP, Larenas-Linnemann D et al. Association between pre-biologic T2-biomarker combinations and response to biologics in patients with severe asthma. Front Immunol. 2024;15:1361891. https://doi.org/10.3389/fimmu.2024.1361891.

17. Djukanović R, Brinkman P, Kolmert J, Gomez C, Schofield J, Brandsma J et al. Biomarker Predictors of Clinical Efficacy of the Anti-IgE Biologic Omalizumab in Severe Asthma in Adults: Results of the SoMOSA Study. Am J Respir Crit Care Med. 2024;210(3):288–297. https://doi.org/10.1164/rccm.202310-1730OC.

18. Kroes JA, Zielhuis SW, van Roon EN, Ten Brinke A. Prediction of response to biological treatment with monoclonal antibodies in severe asthma. Biochem Pharmacol. 2020;179:113978. https://doi.org/10.1016/j.bcp.2020.113978.

19. Girodet PO. Strategies for Identifying Biomarkers in Severe Asthma. Am J Respir Crit Care Med. 2024;210(3):251–252. https://doi.org/10.1164/rccm.202404-0707ED.

20. Sun D, Han C, Sheng J. The role of human ribonuclease A family in health and disease: A systematic review. iScience. 2022;25(11):105284. https://doi.org/10.1016/j.isci.2022.105284.

21. Rutten B, Young S, Rhedin M, Olsson M, Kurian N, Syed F et al. Eosinophilderived neurotoxin: A biologically and analytically attractive asthma biomarker. PLoS ONE. 2021;16(2):e0246627. https://doi.org/10.1371/journal.pone.0246627.

22. Quoc QL, Moon JY, Lee DH, Ban GY, Kim SH, Park HS. Role of Thymus and Activation-Regulated Chemokine in Allergic Asthma. J Asthma Allergy. 2022;15:157–167. https://doi.org/10.2147/JAA.S351720.

23. Kim SH, Yang HJ, Song DJ, Lee YJ, Suh DI, Shim JY et al. Eosinophil-derived neurotoxin: An asthma exacerbation biomarker in children. Allergy Asthma Proc. 2022;43(2):133–139. https://doi.org/10.2500/aap.2022.43.210001.

24. Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells. 2023;12(9):1326. https://doi.org/10.3390/cells12091326.

25. Granger V, Zerimech F, Arab J, Siroux V, de Nadai P, Tsicopoulos A et al. Blood eosinophil cationic protein and eosinophil-derived neurotoxin are associated with different asthma expression and evolution in adults. Thorax. 2022;77(6):552–562. https://doi.org/10.1136/thoraxjnl-2021-217343.

26. An J, Lee JH, Sim JH, Song WJ, Kwon HS, Cho YS et al. Serum EosinophilDerived Neurotoxin Better Reflect Asthma Control Status Than Blood Eosinophil Counts. J Allergy Clin Immunol Pract. 2020;8(8):2681–2688.e1. https://doi.org/10.1016/j.jaip.2020.03.035.

27. Howarth P, Quirce S, Papi A, Israel E, Mallett S, Bates S et al. Eosinophilderived neurotoxin and clinical outcomes with mepolizumab in severe eosinophilic asthma. Allergy. 2020;75(8):2085–2088. https://doi.org/10.1111/all.14266.

28. Nordenmark LH, Hellqvist Å, Emson C, Diver S, Porsbjerg C, Griffiths JM et al. Tezepelumab and mucus plugs in patients with moderate-to-severe asthma. NEJM Evid. 2023;2(10):EVIDoa2300135. https://doi.org/10.1056/EVIDoa2300135.

29. Jang JH, Woo SD, Lee Y, Kim CK, Shin YS, Ye YM, Park HS. Changes in Type 2 Biomarkers After Anti-IL5 Treatment in Patients With Severe Eosinophilic Asthma. Asthma Immunol Res. 2021;13(2):330–338. https://doi.org/10.4168/aair.2021.13.2.330.

30. Lee Y, Lee JH, Yang EM, Kwon E, Jung CG, Kim SC et al. Serum Levels of Eosinophil-Derived Neurotoxin: A Biomarker for Asthma Severity in Adult Asthmatics. Allergy Asthma Immunol Res. 2019;11(3):394–405. https://doi.org/10.4168/aair.2019.11.3.394.

31. Rodriguez del Rio P, Liu AH, Borres MP, Södergren E, Iachetti F, Casale TB. Asthma and Allergy: Unravelling a Tangled Relationship with a Focus on New Biomarkers and Treatment. Int J Mol Sci. 2022;23(7):3881. https://doi.org/10.3390/ijms23073881.

32. Nazaroff CD, LeSuer WE, Masuda MY, Pyon G, Lacy P, Jacobsen EA. Assessment of Lung Eosinophils In Situ Using Immunohistological Staining. Methods Mol Biol. 2021;2223:237–266. https://doi.org/10.1007/978-1-0716-1001-5_17.

33. Porpodis K, Tsiouprou I, Apostolopoulos A, Ntontsi P, Fouka E, Papakosta D et al. Eosinophilic Asthma, Phenotypes-Endotypes and Current Biomarkers of Choice. J Pers Med. 2022;12(7):1093. https://doi.org/10.3390/jpm12071093.

34. Tang M, Charbit AR, Johansson MW, Jarjour NN, Denlinger LC, Raymond WW et al. Utility of eosinophil peroxidase as a biomarker of eosinophilic inflammation in asthma. J Allergy Clin Immunol. 2024;154(3):580–591.e6. https://doi.org/10.1016/j.jaci.2024.03.023.

35. Shah SN, Grunwell JR, Mohammad AF, Stephenson ST, Lee GB, Vickery BP, Fitzpatrick AM. Performance of Eosinophil Cationic Protein as a Biomarker in Asthmatic Children. J Allergy Clin Immunol Pract. 2021;9(7):2761–2769.e2. https://doi.org/10.1016/j.jaip.2021.02.053.

36. Kobayashi K, Nagase H, Sugimoto N, Yamamoto S, Tanaka A, Fukunaga K et al. Mepolizumab decreased the levels of serum galectin-10 and eosinophil cationic protein in asthma. Asia Pac Allergy. 2021;11(3):e31. https://doi.org/10.5415/apallergy.2021.11.e31.

37. Franceschi E, Drick N, Fuge J, Welte T, Suhling H. Eosinophilic cationic protein as marker for response to antibody therapy in severe asthma. ERJ Open Res. 2022;8(3):00138-2022. https://doi.org/10.1183/23120541.00138-2022.

38. Laorden D, Hernández I, Domínguez-Ortega J, Romero D, Álvarez-Sala R, Quirce S. A real-life cohort of mepolizumab treatment in severe eosinophilic asthma. Eur Ann Allergy Clin Immunol. 2024;56(4):169–175. https://doi.org/10.23822/EurAnnACI.1764-1489.289.


Review

For citations:


Titova ON, Kuzubova NA, Lebedeva ES. Prognostic molecular markers of the biological therapy effectiveness for severe bronchial asthma. Meditsinskiy sovet = Medical Council. 2025;(9):11-16. (In Russ.) https://doi.org/10.21518/ms2025-034

Views: 252


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)