Preview

Meditsinskiy sovet = Medical Council

Advanced search

In search of digital approaches and application of artificial intelligence in the study, diagnosis, and treatment of sarcoidosis

https://doi.org/10.21518/ms2025-040

Abstract

Digitalization of healthcare is becoming an integral part of providing medical care to the population. The introduction of artificial intelligence (AI) in medicine leads to the formation of “digital thinking” and public trust in digital healthcare. The purpose of this literature review was to summarize the data related to AI in general and to the study of sarcoidosis – a multiorgan granulomatosis of unknown origin. The most widely represented works are on image recognition, which use different approaches. In pulmonology, this is work with fluorograms, radiographs and computed tomograms. At the same time, comprehensive work is underway on radiomics – comparing image diagnostic data with laboratory and functional data. Programs have been created that recognize speech, analyze the texts of conclusions, the results of tissue diagnostics and even patient auscultation data. In sarcoidosis, the creation of systems to support medical decision-making has been underway since the 1990s, with priority given to Russian phthisiologists, pulmonologists, and mathematicians. In international practice, deep learning has been most fully studied for the diagnosis of pulmonary sarcoidosis. Radiomics was mainly used to differentiate sarcoidosis from malignant tumors. Work is underway to differentiate sarcoidosis and normal data in pulmonary and cardiac sarcoidosis, and for remote self-monitoring of patients. Literature analysis has shown that in clinical medicine, the success of AI is possible only in close cooperation with an expert physician or a multidisciplinary committee of physicians.

About the Authors

A. A. Vizel
Kazan State Medical University
Russian Federation

Aleksandr A. Vizel, Dr. Sci. (Med.), Professor, Head of the Department of Phthisiopulmonology

49, Butlerov St., Kazan, 420012



S. N. Avdeev
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Sergey N. Avdeev, Acad. RAS, Dr. Sci. (Med.), Professor, Chief Pulmonologist of the Ministry of Health of the Russian Federation, Head of the Department of Pulmonology of the Sklifosovsky Institute of Clinical Medicine

8, Bldg. 2, Trubetskaya St., Moscow, 119991



S. G. Lebedev
Institute of Digital Medicine of the Sechenov First Moscow State Medical University (Sechenov University); Central Research Institute for Health Organization and Informatization
Russian Federation

Georgy S. Lebedev, Dr. Sci. (Eng.), Professor, Head of the Department of Information and Internet Technologies, Institute of Digital Medicine of the Sechenov First Moscow State Medical University (Sechenov University); Head of the Department of Innovative Development and Scientific Design, Central Research Institute for Health Organization and Informatization of the Ministry of Health of the Russian Federation

1, Bldg. 2, Abrikosovsky Lane, Moscow, 119435,

11, Dobrolyubova St., Moscow, 127254



I. Yu. Vizel
Kazan State Medical University
Russian Federation

Irina Yu. Vizel, Dr. Sci. (Med.), Professor of RAE, Professor of the Department of Phthisiopulmonology

49, Butlerov St., Kazan, 420012



L. A. Vizel
Kazan (Volga Region) Federal University
Russian Federation

Leonid A. Vizel, Student

49, Butlerov St., Kazan, 420012



References

1. Lebedev GS, Shepetovskaya NL, Reshetnikov VA. Telemedicine and mechanisms of its integration. National Health Care. 2021;2(2):21–27. (In Russ.) https://doi.org/10.47093/2713-069X.2021.2.2.21-27.

2. Reese H. Understanding the differences between AI, machine learning, and deep learning. 2017. Available at: https://www.techrepublic.com/article/understandingthe-differences-between-ai-machine-learning-and-deep-learning.

3. Kohane IS. Injecting artificial intelligence into medicine. NEJM AI. 2024;1(1). https://doi.org/10.1056/AIe2300197.

4. Bellini V, Badino M, Maffezzoni M, Bezzi F, Bignami E. Evolution of hybrid intelligence and its application in evidence-based medicine: A review. Med Sci Monit. 2023;29:e939366. https://doi.org/10.12659/MSM.939366.

5. Tierney A, Gayre G, Hoberman B, Mattern B, Ballesca M, Kipnis P et al. Ambient artificial intelligence scribes to alleviate the burden of clinical documentation. NEJM Catalyst. 2024;5(3). https://doi.org/10.1056/CAT.23.0404.

6. Rocks JW, Mehta P. Memorizing without overfitting: Bias, variance, and interpolation in overparameterized models. Phys Rev Res. 2022;4(1):013201. https://doi.org/10.1103/physrevresearch.4.013201.

7. Humphries SM, Yagihashi K, Huckleberry J, Rho BH, Schroeder JD, Strand M et al. Idiopathic Pulmonary Fibrosis: Data-driven Textural Analysis of Extent of Fibrosis at Baseline and 15-Month Follow-up. Radiology. 2017;285(1):270–278. https://doi.org/10.1148/radiol.2017161177.

8. Humphries SM, Chung A, Swigris JJ, Oh AS, Walsh SLF, Lynch DA et al. Quantification of Interstitial Lung Diseases, From the AJR special series on quantitative imaging. AJR Am J Roentgenol. 2024. https://doi.org/10.2214/AJR.24.32053.

9. Wells AU, Walsh SLF. Quantifying fibrosis in fibrotic lung disease: a good human plus a machine is the best combination? Ann Am Thorac Soc. 2024;21(2):204–205. https://doi.org/10.1513/AnnalsATS.202311-954ED.

10. Remy-Jardin M, Giraud F, Remy J, Copin MC, Gosselin B, Duhamel A. Importance of ground-glass attenuation in chronic diffuse infiltrative lung disease: pathologic-CT correlation. Radiology. 1993;189(3):693–698. https://doi.org/10.1148/radiology.189.3.8234692.

11. Robbie H, Wells AU, Fang C, Jacob J, Walsh SLF, Nair A et al. Serial decline in lung volume parameters on computed tomography (CT) predicts outcome in idiopathic pulmonary fibrosis (IPF). Eur Radiol. 2022;32(4):2650–2660. https://doi.org/10.1007/s00330-021-08338-2.

12. Barnes H, Humphries SM, George PM, Assayag D, Glaspole I, Mackintosh JA et al. Machine learning in radiology: the new frontier in interstitial lung diseases. Lancet Digit Health. 2023;5(1):e41-e50. https://doi.org/10.1016/S2589-7500(22)00230-8.

13. Calandriello L, Mackintosh J, Felder F, Agrawal A, Alamoudi O, Alberti L et al. Artificial intelligence-based decision support for HRCT stratification in fibrotic lung disease; an international study of 116 observers from 37 countries. Eur Respir J. 2023;62(Suppl. 67):OA4848. https://doi.org/10.1183/13993003.congress-2023.OA4848.

14. Litvin AA, Burkin DA, Kropinov AA, Paramzin FN. Radiomics and texture analysis of digital images in oncology (review). Sovremennye Tehnologii v Medicine. 2021;13(2):97. (In Russ.) Available at: https://www.stm-journal.ru/ru/numbers/2021/2/1712/html.

15. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D et al. Endto-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954–961. https://doi.org/10.1038/s41591-019-0447-x.

16. Obert M. Are estimations of radiomic image markers dispensable due to recent deep learning findings? Eur Respir J. 2019;54(2):1901185. https://doi.org/10.1183/13993003.01185-2019.

17. Meldo AA, Utkin LV, Trofimova TN, Ryabinin MA, Moiseenko VM, Shelekhova KV. Novel approaches to development of artificial intelligence algorithms in the lung cancer diagnostics. Radiation Diagnostics and Therapy. 2019;(1):8–18. (In Russ.) http://doi.org/10.22328/2079-5343-2019-10-1-8-18.

18. Vasiliev YuA, Arzamasov KM, Kolsanov AV, Vladzimirsky AV, Omelyanskaya OV, Pestrenin LD, Nechaev NB. Experience of using software based on artificial intelligence technologies on data from 800 thousand fluorographic studies. Medical Doctor and Information Technology. 2023;(4):54–65. (In Russ.) https://doi.org/10.25881/18110193_2023_4_54.

19. Geppert J, Asgharzadeh A, Brown A, Stinton C, Helm EJ, Jayakody S et al. Software using artificial intelligence for nodule and cancer detection in CT lung cancer screening: systematic review of test accuracy studies. Thorax. 2024;79(11):1040–1049. https://doi.org/10.1136/thorax-2024-221662.

20. Majumder A, Sen D. Artificial intelligence in cancer diagnostics and therapy: current perspectives. Indian J Cancer. 2021;58(4):481–492. https://doi.org/10.4103/ijc.IJC_399_20.

21. Kokina DYu, Gombolevsky VA, Arzamasov KM, Andreychenko AE, Morozov SP. Possibilities and limitations of using machine text-processing tools in Russian radiology reports. Digital Diagnostics. 2022;3(4):374−383. (In Russ.) https://doi.org/10.17816/DD101099.

22. Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N et al. Classification of usual interstitial pneumonia in patients with interstitial lung disease: assessment of a machine learning approach using high-dimensional transcriptional data. Lancet Respir Med. 2015;3(6):473–482. https://doi.org/10.1016/S2213-2600(15)00140-X.

23. Chen H, Zhang S, Matsumoto H, Tsuchiya N, Yamada C, Okasaki S et al. Employing a low-code machine learning approach to predict in-hospital mortality and length of stay in patients with community-acquired pneumonia. Sci Rep. 2025;15(1):309. https://doi.org/10.1038/s41598-024-82615-0.

24. Pal R, Barney A, Sgalla G, Walsh SLF, Sverzellati N, Fletcher S et al. Automated system for diagnosing pulmonary fibrosis using crackle analysis in recorded lung sounds based on iterative envelope mean fractal dimension filter. Physiol Meas. 2025. https://doi.org/10.1088/1361-6579/ada9b4.

25. Borisov SE, Adamovich VN, Shlain VA. Mathematical methods and computers in the differential diagnosis of respiratory sarcoidosis. Problemy Tuberkuleza. 1991;(9):32–35. (In Russ.).

26. Vizel AA. Support systems of decisions in medicine. Kazan Medical Journal. 1992;73(3):219–220. (In Russ.).

27. Визель Л, Визель А, Визель И, Авдеев С, Шакирова Г, Чикрин д. Программа SarcoQ (СаркоКью). Патент RU №2025610517, 10.01.2025. Режим доступа: https://onlinepatent.ru/software/2025610517.

28. Premjee A, Li L, Garikapati S, Sarpong KN, Morgenthau AS. Leveraging AI technology in sarcoidosis. Curr Opin Pulm Med. 2024;30(5):570–575. https://doi.org/10.1097/MCP.0000000000001085.

29. Lew D, Klang E, Soffer S, Morgenthau AS. Current Applications of Artificial Intelligence in Sarcoidosis. Lung. 2023;201:445–454. https://doi.org/10.1007/s00408-023-00641-7.

30. Schupp JC, Freitag-Wolf S, Bargagli E, Mihailović-Vučinić V, Rottoli P, Grubanovic A et al. Phenotypes of organ involvement in sarcoidosis. Eur Respir J. 2018;51(1):1700991. https://doi.org/10.1183/13993003.00991-2017.

31. Chen ES. Is this the dawning of AI for sarcoidosis? Lung. 2023;201(5):443–444. https://doi.org/10.1007/s00408-023-00643-5.

32. Crouser ED, Maier LA, Wilson KC, Bonham CA, Morgenthau AS, Patterson KC et al. Diagnosis and detection of sarcoidosis. An official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2020;201(8):e26-e51. https://doi.org/10.1164/rccm.202002-0251ST.

33. Wells AU, Walsh SLF. Quantitative computed tomography and machine learning: recent data in fibrotic interstitial lung disease and potential role in pulmonary sarcoidosis. Curr Opin Pulm Med. 2022;28(5):492–497. https://doi.org/10.1097/MCP.0000000000000902.

34. Judson MA, Qiu J, Dumas CL, Yang J, Sarachan B, Mitra J. An artificial intelligence platform for the radiologic diagnosis of pulmonary sarcoidosis: an initial pilot study of chest computed tomography analysis to distinguish pulmonary sarcoidosis from a negative lung cancer screening scan. Lung. 2023;201:611–616. https://doi.org/10.1007/s00408-023-00655-1.

35. Lippitt WL, Maier LA, Fingerlin TE, Lynch DA, Yadav R, Rieck J et al. The textures of sarcoidosis: quantifying lung disease through variograms. medRxiv. 2024. https://doi.org/10.1101/2024.05.20.24307618.

36. Ryan SM, Fingerlin TE, Mroz M, Barkes B, Hamzeh N, Maier LA, Carlson NE. Radiomic measures from chest high-resolution computed tomography associated with lung function in sarcoidosis. Eur Respir J. 2019;54(2):1900371. https://doi.org/10.1183/13993003.00371-2019.

37. Васильев ЮА, Туравилова ЕВ, Шулькин ИМ, Омелянская ОВ, Арзамасов КМ, Козлов ДВ и др. MosMedData: КТ с признаками саркоидоза легких. Патент RU 2023621228, 17.04.2023. Режим доступа: https://elibrary.ru/aonfau.

38. Антипушина ДН. Клинические характеристики больных саркоидозом. Патент RU 2019622030, 11.11.2019. Режим доступа: https://elibrary.ru/aildpx.

39. Chuchalin AG, Avdeev SN, Aisanov ZR, Baranova OP, Borisov SE, Geppe NA et al. Sarcoidosis: federal clinical guidelines for diagnosis and treatment. Pulmonologiya. 2022;32(6):806–833. (In Russ.) https://doi.org/10.18093/0869-0189-2022-32-6-806-833.

40. Визель АА, Белиловский ЕМ, Соколов НГ, Галков ЕМ. Логическое правило интерпретации внешнего дыхания и его реализация на микро-ЭВМ. Казань; 1990. 10 с.

41. de Lima AD, Lopes AJ, do Amaral JLM, de Melo PL. Explainable machine learning methods and respiratory oscillometry for the diagnosis of respiratory abnormalities in sarcoidosis. BMC Med Inform Decis Mak. 2022;22(1):274. https://doi.org/10.1186/s12911-022-02021-2.

42. Katsushika S, Kodera S, Nakamoto M, Ninomiya K, Kakuda N, Shinohara H et al. Deep learning algorithm to detect cardiac sarcoidosis from echocardiographic movies. Circ J. 2021;86(1):87–95. https://doi.org/10.1253/circj.CJ-21-0265.

43. Dai Q, Sherif AA, Jin C, Chen Y, Cai P, Li P. Machine learning predicting mortality in sarcoidosis patients admitted for acute heart failure. Cardiovasc Digit Health J. 2022;3(6):297–304. https://doi.org/10.1016/j.cvdhj.2022.08.001.

44. Bobbio E, Eldhagen P, Polte CL, Hjalmarsson C, Karason K, Rawshani A et al. Clinical Outcomes and Predictors of Long-Term Survival in Patients With and Without Previously Known Extracardiac Sarcoidosis Using Machine Learning: A Swedish Multicenter Study. J Am Heart Assoc. 2023;12(15):e029481. https://doi.org/10.1161/JAHA.123.029481.

45. Nakajo M, Hirahara D, Jinguji M, Ojima S, Hirahara M, Tani A et al. Jpn J Radiol. 2024;42(7):744–752. https://doi.org/10.1007/s11604-024-01546-y.

46. Eckstein J, Moghadasi N, Körperich H, Akkuzu R, Sciacca V, Sohns C et al. Machine-Learning-Based diagnostics of cardiac sarcoidosis using multichamber wall motion analyses. Diagnostics. 2023;13(14):2426. https://doi.org/10.3390/diagnostics13142426.

47. Osipov N, Kudryavtsev I, Spelnikov D, Rubinstein A, Belyaeva E, Kulpina A et al. Differential diagnosis of tuberculosis and sarcoidosis by immunological features using machine learning. Diagnostics. 2024;14(19):2188. https://doi.org/10.3390/diagnostics14192188.

48. Dunweg A, Kahlman V, Kicken H. Development of a digital self-management tool for people with sarcoidosis. Eur Respir J. 2024;64(Suppl. 68):PA5181. https://doi.org/10.1183/13993003.congress-2024.PA5181.


Review

For citations:


Vizel AA, Avdeev SN, Lebedev SG, Vizel IY, Vizel LA. In search of digital approaches and application of artificial intelligence in the study, diagnosis, and treatment of sarcoidosis. Meditsinskiy sovet = Medical Council. 2025;(9):57-68. (In Russ.) https://doi.org/10.21518/ms2025-040

Views: 168


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)