Preview

Meditsinskiy sovet = Medical Council

Advanced search

Mycoplasma pneumonia: Modern antibacterial therapy

https://doi.org/10.21518/ms2025-070

Abstract

Mycoplasma pneumoniae (M. pneumoniae) is one of the key pathogens causing the community-acquired pneumonia in all countries, especially in children and adolescents. Globally, M. pneumoniae infections occur in different regions of the world every 3–7 years and last 1–2 years. M. pneumoniae has infective factors characterized by high affinity to the epithelial cells of the respiratory tract, direct damaging effect, as well as ability to interact with immune system cells. The pathogenesis of mycoplasma infection, i.e. pneumonia, includes both direct damage and immune response mediated by vasculitis and thrombosis. Macrolides are used as the main class of antibiotics for the treatment of mycoplasma infection. They inhibit bacterial growth by binding to 23S rRNA and inhibiting protein synthesis. However, macrolide-resistant strains of M. pneumoniae (MRMP) have become widespread in Asia since 2000, accounting for about 80–90% infections in China and Japan today, at the same time, the detection rate of MRMP is very low in European countries and the US. Azithromycin and clarithromycin have high bioavailability, are stable at acidic pH, oral forms do not require intestinal coating. Instant soluble drug forms (azithromycin) and suspension can be used by patients regardless of food intake, which ensures convenience. While the slow released drug forms of azithromycin should be taken only on an empty stomach, the slow released extended forms of clarithromycin should be taken with food.

About the Authors

N. B. Lazareva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Natalia B. Lazareva; Dr. Sci. (Med.); Professor of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

8; Bldg. 2; Trubetskaya St.; Moscow; 119991

 



S. S. Solovieva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Svetlana S. Solovieva; Cand. Sci. (Med.); Assistant of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

8; Bldg. 2; Trubetskaya St.; Moscow; 119991



A. S. Ermolaeva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Anna S. Ermolaeva; Cand. Sci. (Med.); Assistant of the Department of Clinical Pharmacology and Propaedeutics of Internal Diseases

8; Bldg. 2; Trubetskaya St.; Moscow; 119991



M. E. Andreeva
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Maria E. Andreeva; Student

8; Bldg. 2; Trubetskaya St.; Moscow; 119991



References

1. Marsden PA, Woodhead M. Lower respiratory tract infection in the community: prognosis predictably difficult to predict. Prim Care Respir J. 2012;21(1):11–13. https://doi.org/10.4104/pcrj.2012.00018.

2. Rachina SA, Bobylev AA. Atypical Pathogens of Community-Acquired Pneumonia: Epidemiology, Diagnosis, and Treatment. Prakticheskaya Pulʹmonologiya. 2016;(2):20–27. (In Russ.) Available at: https://www.elibrary.ru/wwyjph.

3. Kutty PK, Jain S, Diaz MH, Self WH, Williams D, Zhu Y et al. Clinical and Epidemiologic Features of Mycoplasma pneumoniae Infection Among Adults Hospitalized with Community-acquired Pneumonia. Int J Med Sci. 2024;21(15):3003–3009. http://doi.org/10.7150/ijms.99233.

4. Meyer Sauteur PM. Childhood community-acquired pneumonia. Eur J Pediatr. 2024;183(3):1129–1136. https://doi.org/10.1007/s00431-023-05366-6.

5. Li W, Wang BH, Chen BH, Sun Y, Li L, Xiang WQ et al. Coinfection of SARS-CoV-2 Omicron variant and other respiratory pathogens in children. World J Pediatr 2024;20(1):92–96. https://doi.org/10.1007/s12519-023-00744-4.

6. Meyer Sauteur PM, Beeton ML, Uldum SA, Bossuyt N, Vermeulen M, Loens K et al. Mycoplasma pneumoniae detections before and during the COVID-19 pandemic: results of a global survey, 2017 to 2021. Euro Surveill. 2022;27(19):2100746. https://doi.org/10.2807/1560-7917.ES.2022.27.19.2100746.

7. Wang X, Li M, Luo M, Luo Q, Kang L, Xie H et al. Mycoplasma pneumoniae triggers pneumonia epidemic in autumn and winter in Beijing: a multicentre, population-based epidemiological study between 2015 and 2020. Emerg Microbes Infect. 2022;11(1):1508–1517. https://doi.org/10.1080/22221751.2022.2078228.

8. Yamazaki T, Kenri T. Epidemiology of Mycoplasma pneumoniae Infections in Japan and Therapeutic Strategies for Macrolide-Resistant M. pneumoniae. Front Microbiol. 2016;7:693. https://doi.org/10.3389/fmicb.2016.00693.

9. Edouard S, Boughammoura H, Colson P, La Scola B, Fournier PE, Fenollar F. Large-Scale Outbreak of Mycoplasma pneumoniae Infection, Marseille, France, 2023-2024. Emerg Infect Dis. 2024;30(7):1481–1484. https://doi.org/10.3201/eid3007.240315.

10. Nordholm AC, Søborg B, Jokelainen P, Lauenborg Møller K, Flink Sørensen L, Grove Krause T et al. Mycoplasma pneumoniae epidemic in Denmark, October to December, 2023. Euro Surveill. 2024;29(2):2300707. https://doi.org/10.2807/1560-7917.ES.2024.29.2.2300707.

11. Upadhyay P, Singh V. Mycoplasma pneumoniae Outbreak in 2023: Postpandemic Resurgence of an Atypical Bacterial Pathogen. Cureus. 2024;16(4):e58757. https://doi.org/10.7759/cureus.58757.

12. Cillóniz C, Torres A, Niederman M, van der Eerden M, Chalmers J, Welte T, Blasi F. Community-acquired pneumonia related to intracellular pathogens. Intensive Care Med. 2016;42(9):1374–1386. https://doi.org/10.1007/s00134-016-4394-4.

13. Dégrange S, Cazanave C, Charron A, Renaudin H, Bébéar C, Bébéar CM. Development of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Typing of Mycoplasma pneumoniae. J Clin Microbiol. 2009;47(4):914–923. https://doi.org/10.1128/jcm.01935-08.

14. Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34(4):482–492. https://doi.org/10.1086/324626.

15. Malhotra-Kumar S, Lammens C, Coenen S, Van Herck K, Goossens H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet. 2007;369(9560):482–490. https://doi.org/10.1016/S0140-6736(07)60235-9.

16. Cetin ES, Gunes H, Kaya S, Aridogan BC, Demirci M. Distribution of genes encoding resistance to macrolides, lincosamides and streptogramins among clinical staphylococcal isolates in a Turkish university hospital. J Microbiol Immunol Infect. 2010;43(6):524–529. https://doi.org/10.1016/S1684-1182(10)60081-3.

17. Xiao L, Ratliff AE, Crabb DM, Mixon E, Qin X, Selvarangan R et al. Molecular Characterization of Mycoplasma pneumoniae Isolates in the United States from 2012 to 2018. J Clin Microbiol. 2020;58(10):e00710-20. https://doi.org/10.1128/jcm.00710-20.

18. Kenri T, Suzuki M, Sekizuka T, Ohya H, Oda Y, Yamazaki T et al. Periodic Genotype Shifts in Clinically Prevalent Mycoplasma pneumoniae Strains in Japan. Front Cell Infect Microbiol. 2020;10:385. https://doi.org/10.3389/fcimb.2020.00385.

19. Shah SS. Mycoplasma pneumoniae as a Cause of Community-Acquired Pneumonia in Children. Clin Infect Dis. 2019;68(1):13–14. https://doi.org/10.1093/cid/ciy421.

20. Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin Microbiol Rev. 2017;30(3):747–809. https://doi.org/10.1128/cmr.00114-16.

21. Yan C, Xue GH, Zhao HQ, Feng YL, Cui JH, Yuan J. Current status of Mycoplasma pneumoniae infection in China. World J Pediatr. 2024;20(1):1–4. https://doi.org/10.1007/s12519-023-00783-x.

22. Яковлев СВ (ред.). Рациональная антимикробная фармакотерапия. 3-е изд., перераб. и доп. М.: Литтерра; 2023. 896 с. https://doi.org/10.33029/4235-0374-1-ANT-2023-1-896.

23. Kutty PK, Jain S, Taylor TH, Bramley AM, Diaz MH, Ampofo M et al. Mycoplasma pneumoniae Among Children Hospitalized With Community-acquired Pneumonia. Clin Infect Dis. 2019;68(1):5–12. https://doi.org/10.1093/cid/ciy419.

24. Meyer Sauteur PM, Theiler M, Buettcher M, Seiler M, Weibel L, Berger C. Frequency and Clinical Presentation of Mucocutaneous Disease Due to Mycoplasma pneumoniae Infection in Children With Community-Acquired Pneumonia. JAMA Dermatol. 2020;156(2):144–150. https://doi.org/10.1001/jamadermatol.2019.3602.

25. Golkar T, Zieliński M, Berghuis AM. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front Microbiol. 2018;9:1942. https://doi.org/10.3389/fmicb.2018.01942.

26. Svetlov MS, Vázquez-Laslop N, Mankin AS. Kinetics of drug-ribosome interactions defines the cidality of macrolide antibiotics. Proc Natl Acad Sci U S A. 2017;114(52):13673–13678. https://doi.org/10.1073/pnas.1717168115.

27. Lazareva NB, Rebrova EV, Ryazanova AYu, Bondarenko DA, Savintseva DD. Macrolides: Modern Position in Pulmonological Practice. Prakticheskaya Pul’monologiya. 2019;(1):66–75. (In Russ.) Available at: https://www.elibrary.ru/fqnspw.

28. Sligl WI, Asadi L, Eurich DT, Tjosvold L, Marrie TJ, Majumdar SR. Macrolides and mortality in critically ill patients with community-acquired pneumonia: a systematic review and meta-analysis. Crit Care Med. 2014;42(2):420–432. https://doi.org/10.1097/CCM.0b013e3182a66b9b.

29. Dar-Odeh N, Elsayed S, Babkair H, Abu-Hammad S, Althagafi N, Bahabri R et al. What the dental practitioner needs to know about pharmaco-therapeutic modalities of COVID-19 treatment: A review. J Dent Sci. 2021;16(3):806–816. https://doi.org/10.1016/j.jds.2020.11.007.

30. Авдеев СН, Дехнич АВ, Зайцев АА, Козлов РС, Лещенко ИВ, Рачина СА и др. Внебольничная пневмония у взрослых: клинические рекомендации. М.; 2024. 73 с. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/654_2.

31. Goycochea-Valdivia WA, Ares Alvarez J, Conejo Fernández AJ, Jiménez Jiménez AB, Maté Cano I, de Jesús Reinoso Lozano T et al. Position statement of the Spanish Society of Paediatric Infectious diseases on the diagnosis and treatment of Mycoplasma pneumoniae infection. An Pediatr. 2024;101(1):46–57. https://doi.org/10.1016/j.anpede.2024.05.014.

32. Hansen MP, Scott AM, McCullough A, Thorning S, Aronson JK, Beller EM et al. Adverse events in people taking macrolide antibiotics versus placebo for any indication. Cochrane Database Syst Rev. 2019;1(1):CD011825. https://doi.org/10.1002/14651858.CD011825.pub2.

33. Moseley RH. Hepatotoxicity of antimicrobials and antifungal agents. In: Kaplowitz N, DeLeve LD (eds.). Drug-induced Liver Disease. 3rd ed. Amsterdam: Elsevier; 2013, pp. 463–482. https://doi.org/10.1016/B978-0-12-387817-5.00026-1.

34. Ohtani H, Taninaka C, Hanada E, Kotaki H, Sato H, Sawada Y, Iga T. Comparative pharmacodynamic analysis of Q-T interval prolongation induced by the macrolides clarithromycin, roxithromycin, and azithromycin in rats. Antimicrob Agents Chemother. 2000;44(10):2630–2637. https://doi.org/10.1128/AAC.44.10.2630-2637.2000.

35. Shaffer D, Singer S, Korvick J, Honig P. Concomitant risk factors in reports of torsades de pointes associated with macrolide use: review of the United States Food and Drug Administration Adverse Event Reporting System. Clin Infect Dis. 2002;35(2):197–200. https://doi.org/10.1086/340861.

36. Inghammar M, Nibell O, Pasternak B, Melbye M, Svanström H, Hviid A. Long-Term Risk of Cardiovascular Death With Use of Clarithromycin and Roxithromycin: A Nationwide Cohort Study. Am J Epidemiol. 2018;187(4):777–785. https://doi.org/10.1093/aje/kwx359.

37. Lazareva NB, Chikh EV, Rebrova EV. Outcomes of the Long-Term Administration of Macrolide Antibiotics in Children With Bronchiectases: Frequently Asked Questions. Current Pediatrics. 2018;17(2):166–169. (In Russ.) https://doi.org/10.15690/vsp.v17i2.1884.

38. Ray WA, Murray KT, Meredith S, Narasimhulu SS, Hall K, Stein CM. Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med. 2004;351(11):1089–1096. https://doi.org/10.1056/nejmoa040582.

39. Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687–710. https://doi.org/10.1097/FTD.0b013e31815c16f5.

40. Cluver C, Novikova N, Eriksson DO, Bengtsson K, Lingman GK. Interventions for treating genital Chlamydia trachomatis infection in pregnancy. Cochrane Database Syst Rev. 2017;9(9):CD010485. https://doi.org/10.1002/14651858.CD010485.pub2.

41. Sarkar M, Woodland C, Koren G, Einarson AR. Pregnancy outcome following gestational exposure to azithromycin. BMC Pregnancy Childbirth. 2006;6:18. https://doi.org/10.1186/1471-2393-6-18.

42. Keskin-Arslan E, Erol H, Uysal N, Karadas B, Temiz T, Kaplan YC. Pregnancy outcomes following maternal macrolide use: A systematic review and meta-analysis. Reprod Toxicol. 2023;115:124–146. https://doi.org/10.1016/j.reprotox.2022.12.003.

43. Chen Y, Ye L, Mei J, Tian M, Xu M, Jin Q et al. Pharmacokinetics and Bioequivalence of Two Formulations of Azithromycin Tablets: A Randomized, Single-Dose, Three-Period, Crossover Study in Healthy Chinese Volunteers Under Fasting and Fed Conditions. Drugs R D. 2024;24(2):201–209. https://doi.org/10.1007/s40268-024-00464-8.

44. Zyryanov SK, Baibulatova EA. The Use of New Dosage Forms of Antibiotics as a Way to Improve the Effectiveness and Safety of Antibiotic Therapy. Antibiotiki i Khimioterapiya. 2019;64(3-4):81–91. (In Russ.) Available at: https://www.antibiotics-chemotherapy.ru/jour/article/view/132.

45. Vizel AA, Vizel IYu, Zalilova ASh. Azithromycin: Antibiotic and not only... Meditsinskiy Sovet. 2024;18(20):168–175. (In Russ.) https://doi.org/10.21518/ms2024-375.


Review

For citations:


Lazareva NB, Solovieva SS, Ermolaeva AS, Andreeva ME. Mycoplasma pneumonia: Modern antibacterial therapy. Meditsinskiy sovet = Medical Council. 2025;(9):183-190. (In Russ.) https://doi.org/10.21518/ms2025-070

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)