Preview

Meditsinskiy sovet = Medical Council

Advanced search

Inhalational administration of surfactant to prevent bronchopulmonary dysplasia in premature infants

https://doi.org/10.21518/ms2025-264

Abstract

The incidence of bronchopulmonary dysplasia in leading clinics around the world remains high and even increases in some countries, which directly depends on the gestational age and duration of respiratory therapy. Despite a significant increase in survival rates of premature infants and a decrease in the incidence of other diseases, the incidence of bronchopulmonary dysplasia remains high. Over the past three decades, the incidence of bronchopulmonary dysplasia in premature infants in different countries has varied from 11 to 50% and has become increasingly common due to improvements in nursing methods and, as a result, an increase in the survival of extremely premature infants. To date, there are no specific treatments to prevent the development of bronchopulmonary dysplasia. However, prevention of preterm birth and antenatal steroid prophylaxis, optimal respiratory approaches with preferences for non-invasive ventilation, and the use of exogenous surfactants reduce the incidence and risk of bronchopulmonary dysplasia. The article presents a clinical observation of a group of infants, which included 22 infants (9 girls, 13 boys) with the risk of developing or progressing bronchopulmonary dysplasia. All infants underwent treatment in the neonatal intensive care unit (NICU) setting of the Regional Perinatal Center at Nizhny Novgorod Federal City Clinical Hospital No. 40 (Avtozavodskoy District, Nizhny Novgorod) and received combination therapy. It has been established that the use of inhaled surfactant in premature infants showed positive outcomes.

About the Authors

E. V. Guzikov
City Clinical Hospital No. 40 of Avtozavodsky District of Nizhny Novgorod
Russian Federation

Eduard V. Guzikov - Anesthesiologist, Intensive Care Physician, Head of the Department of Resuscitation and Intensive Care for Newborns, Regional Perinatal Center, City Clinical Hospital No. 40 of Avtozavodsky District of Nizhny Novgorod.

71, Hero Yuri Smirnov St., Nizhny Novgorod, 603083



O. V. Guzikov
City Clinical Hospital No. 40 of Avtozavodsky District of Nizhny Novgorod
Russian Federation

Oleg V. Guzikov - Neonatologist of the Department of Resuscitation and Intensive Care for Newborns, Regional Perinatal Center, City Clinical Hospital No. 40 of Avtozavodsky District of Nizhny Novgorod.

71, Hero Yuri Smirnov St., Nizhny Novgorod, 603083



References

1. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease – bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–368. https://doi.org/10.1056/NEJM196702162760701.

2. Bonikos DS, Bensch KG, Ludwin SK, Northway WH Jr. Oxygen toxicity in the newborn. The effect of prolonged 100 per cent O2 exposure on the lungs of newborn mice. Lab Invest. 1975;32(5):619–635. Available at: https://pubmed.ncbi.nlm.nih.gov/1092910/.

3. Clements JA. Surface tension of lung extracts. Proc Soc Exp Biol Med. 1957;95(1):170–172. https://doi.org/10.3181/00379727-95-23156.

4. Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child. 1959;97(5 Pt 1):517–523. https://doi.org/10.1001/archpedi.1959.02070010519001.

5. Farrell PM, Wood RE. Epidemiology of hyaline membrane disease in the United States: analysis of national mortality statistics. Pediatrics. 1976;58(2):167–176. Available at: https://pubmed.ncbi.nlm.nih.gov/951131/.

6. Clements JA, Avery ME. Lung surfactant and neonatal respiratory distress syndrome. Am J Respir Crit Care Med. 1998;157(4 Pt 2):S59–S66. https://doi.org/10.1164/ajrccm.157.4.nhlb1-1.

7. Liggins GC. Premature delivery of foetal lambs infused with glucocorticoids. J Endocrinol. 1969;45(4):515–523. https://doi.org/10.1677/joe.0.0450515.

8. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50(4):515–525. Available at: https://neuroyates.com/honorshumanphysiology/PDFs/Glucorticoid-Preterm.pdf.

9. Fujiwara T, Maeta H, Chida S, Morita T, Watabe Y, Abe T. Artificial surfactant therapy in hyaline-membrane disease. Lancet. 1980;1(8159):55–59. https://doi.org/10.1016/s0140-6736(80)90489-4.

10. Jobe AH, Mitchell BR, Gunkel JH. Beneficial effects of the combined use of prenatal corticosteroids and postnatal surfactant on preterm infants. Am J Obstet Gynecol. 1993;168(2):508–513. https://doi.org/10.1016/0002-9378(93)90483-y.

11. Kari MA, Hallman M, Eronen M, Teramo K, Virtanen M, Koivisto M, Ikonen RS. Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study. Pediatrics. 1994;93(5):730–736. https://pubmed.ncbi.nlm.nih.gov/8165070/.

12. Thébaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH et al. Bronchopulmonary dysplasia. Nat Rev Dis Primers. 2019;5(1):78. https://doi.org/10.1038/s41572-019-0127-7.

13. Coalson JJ. Pathology of new bronchopulmonary dysplasia. Semin Neonatol. 2003;8(1):73–81. https://doi.org/10.1016/s1084-2756(02)00193-8.

14. Nuytten A, Behal H, Duhamel A, Jarreau PH, Torchin H, Milligan D et al. Postnatal Corticosteroids Policy for Very Preterm Infants and Bronchopulmonary Dysplasia. Neonatology. 2020;117(3):308–315. https://doi.org/10.1159/000507195.

15. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S et al. Trends in Care Practices, Morbidity, and Mortality of Extremely Preterm Neonates, 1993–2012. JAMA. 2015;314(10):1039–1051. https://doi.org/10.1001/jama.2015.10244.

16. Horbar JD, Edwards EM, Greenberg LT, Morrow KA, Soll RF, Buus-Frank ME, Buzas JS. Variation in Performance of Neonatal Intensive Care Units in the United States. JAMA Pediatr. 2017;171(3):e164396. https://doi.org/10.1001/jamapediatrics.2016.4396.

17. Abman SH, Collaco JM, Shepherd EG, Keszler M, Cuevas-Guaman M, Welty SE et al. Interdisciplinary Care of Children with Severe Bronchopulmonary Dysplasia. J Pediatr. 2017;181:12–28.e1. https://doi.org/10.1016/j.jpeds.2016.10.082.

18. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics. 2005;116(6):1353–1360. https://doi.org/10.1542/peds.2005-0249.

19. McEvoy CT, Jain L, Schmidt B, Abman S, Bancalari E, Aschner JL. Bronchopulmonary dysplasia: NHLBI Workshop on the Primary Prevention of Chronic Lung Diseases. Ann Am Thorac Soc. 2014;11(Suppl. 3):S146–S153. https://doi.org/10.1513/annalsats.201312-424ld.

20. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics. 2010;126(3):443–456. https://doi.org/10.1542/peds.2009-2959.

21. Володин НН, Дегтярев ДН (ред.). Неонатология: национальное руководство: в 2 т. 2-е изд., перераб. и доп. М.: ГЭОТАР-Медиа; 2023. Т.2. 768 с.

22. Иванов ДО (ред.). Руководство по перинатологии: в 2 т. 2-е изд., испр. и доп. СПб.: Информ-Навигатор; 2019. Т. 2. 1592 с.

23. Dani C, Cecchi A, Bertini G. Role of oxidative stress as physiopathologic factor in the preterm infant. Minerva Pediatr. 2004;56(4):381–394. Available at: https://pubmed.ncbi.nlm.nih.gov/15457136/.

24. Awasthi S, Coalson JJ, Yoder BA, Crouch E, King RJ. Deficiencies in lung surfactant proteins A and D are associated with lung infection in very premature neonatal baboons. Am J Respir Crit Care Med. 2001;163(2):389–397. https://doi.org/10.1164/ajrccm.163.2.2004168.

25. Ballard PL, Gonzales LW, Godinez RI, Godinez MH, Savani RC, McCurnin DC et al. Surfactant composition and function in a primate model of infant chronic lung disease: effects of inhaled nitric oxide. Pediatr Res. 2006;59(1):157–162. https://doi.org/10.1203/01.pdr.0000190664.69081.f1.

26. Ballard PL, Merrill JD, Truog WE, Godinez RI, Godinez MH, McDevitt TM et al. Surfactant function and composition in premature infants treated with inhaled nitric oxide.Pediatrics. 2007;120(2):346–353. https://doi.org/10.1542/peds.2007-0095.

27. Tortorolo L, Vento G, Matassa PG, Zecca E, Romagnoli C. Early changes of pulmonary mechanics to predict the severity of bronchopulmonary dysplasia in ventilated preterm infants. J Matern Fetal Neonatal Med. 2002;12(5):332–337. https://doi.org/10.1080/jmf.12.5.332.337.

28. Freezer NJ, Sly PD. Predictive value of measurements of respiratory mechanics in preterm infants with HMD. Pediatr Pulmonol. 1993;16(2):116–123. https://doi.org/10.1002/ppul.1950160207.

29. Hjalmarson O, Sandberg KL. Lung function at term reflects severity of bronchopulmonary dysplasia. J Pediatr. 2005;146(1):86–90. https://doi.org/10.1016/j.jpeds.2004.08.044.

30. Adamson IY, Young L, King GM. Reciprocal epithelial: fibroblast interactions in the control of fetal and adult rat lung cells in culture. Exp Lung Res. 1991;17(4):821–835. https://doi.org/10.3109/01902149109062880.

31. Cattel F, Giordano S, Bertiond C, Lupia T, Corcione S, Scaldaferri M et al. Use of exogenous pulmonary surfactant in acute respiratory distress syndrome (ARDS): Role in SARS-CoV-2-related lung injury. Respir Physiol Neurobiol. 2021;288:103645. https://doi.org/10.1016/j.resp.2021.103645.

32. Dushianthan A, Clark HW, Brealey D, Pratt D, Fink JB, Madsen J et al. A randomized controlled trial of nebulized surfactant for the treatment of severe COVID-19 in adults (COVSurf trial). Sci Rep. 2023;13(1):20946. https://doi.org/10.1038/s41598-023-47672-x.

33. Dabbagh A, Rajaei S, Ghahremani M, Fathi M, Massoudi N, Tavana S et al. The effect of surfactant on clinical outcome of patients with COVID-19 under mechanical ventilation: A structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):919. https://doi.org/10.1186/s13063-020-04815-z.

34. Westhoff M, Freitag L. Surfactant-treatment of complete lobar atelectasis after exacerbation of bronchial asthma by infection. Pneumologie. 2001;55(3):130–134. (In German) https://doi.org/10.1055/s-2001-12287.

35. Anzueto A, Baughman RP, Guntupalli KK, Weg JG, Wiedemann HP, Raventós AA et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. N Engl J Med. 1996;334(22):1417–1421. https://doi.org/10.1056/nejm199605303342201.

36. Bautin AE, Avdeev SN, Seyliev AA, Shvechkova MV, Merzhoeva ZM, Trushenko NV et al. Inhalation surfactant therapy in the integrated treatment of severe COVID-19 pneumonia. Tuberculosis and Lung Diseases. 2020;98(9):6–12. (In Russ.) https://doi.org/10.21292/2075-1230-2020-98-9-6-12.

37. Antonov AG, Ryndin AYu. Surfactant-BL in complex therapy of respiratory disorders in the neonate. Clinical Practice in Pediatrics. 2007;2(4):61–64. (In Russ.) Available at: https://www.elibrary.ru/ibadph.

38. Shestak EV, Starkov VYu, Makarov VS, Dodrov DS, Svetlakova DV, Adylov TS, Evdokimova MV. Analysis of the dynamics of the ultrasound picture of the lungs of newborns during inhalation prophylaxis of bronchopulmonary dysplasia with the surfactant drug: Pilot prospective clinical study. Meditsinskiy Sovet. 2025;19(4):124–134. (In Russ.) https://doi.org/10.21518/ms2025-090.

39. Perepelitsa S.A., Luchina A.A. Inhaled Surfactant Therapy in Newborns in Artificial Lung Ventilation. Obshchaya Reanimatologiya. 2014;10(5):44–51. (In Russ.) https://doi.org/10.15360/1813-9779-2014-5-44-51.

40. Алексеева АА, Балашова ЕН, Баранов АА, Басаргина МА, Батышева ТТ, Беляева ИА и др. Бронхолегочная дисплазия: клинические рекомендации. М.; 2024. 99 с. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/377_2.


Review

For citations:


Guzikov EV, Guzikov OV. Inhalational administration of surfactant to prevent bronchopulmonary dysplasia in premature infants. Meditsinskiy sovet = Medical Council. 2025;(11):38-43. (In Russ.) https://doi.org/10.21518/ms2025-264

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)