Clinical polymorphism of storage diseases: A diferential diagnostic algorithm
https://doi.org/10.21518/ms2025-217
Abstract
The article presents an overview of the current understanding of lysosomal storage diseases (LSD) – a group of rare genetic disorders characterized by abnormal accumulation of macromolecular degradation products within cell organelles. The clinical manifestations of LSD vary significantly depending on the type of disorder and may include liver damage, neurological symptoms, and involvement of other organs. To illustrate the unique features of clinical course and mechanisms of liver injury associated with different types of LSD, individual nosologies have been reviewed, including Gaucher’s disease, Niemann-Pick disease, lysosomal acid lipase deficiency, gangliosidoses, and mucopolysaccharidoses, all of which show substantial differences in their pathogenesis and clinical presentations. Diagnostic criteria were described, focusing on measurements of enzyme activities and identification of pathogenic genotypes, alongside specialized biomarkers utilized for confirming diagnoses. Diagnosis of LSDs relies on assessing enzyme activity or metabolite concentrations in biological samples, while molecular-genetic testing is employed to verify the diagnosis. In this review, various therapeutic strategies are discussed, encompassing enzyme replacement therapy (ERT), substrate reduction therapy, and liver transplantation when severe organ involvement occurs. Early detection and prompt initiation of treatment are emphasized as crucial steps to prevent irreversible organ damage. Additionally, the prospects of applying gene therapy, which has shown positive outcomes in experimental studies, are highlighted. This approach opens up new possibilities for innovative treatments aimed at restoring normal enzyme function and preventing disease progression. The presented data offer a comprehensive insight into the issues surrounding the diagnosis and management of LSDs, which is important for both clinicians and researchers engaged in the study of rare diseases.
Keywords
About the Authors
N. N. MartynovichRussian Federation
Natalya N. Martynovich - Dr. Sci. (Med.), Professor of the Department of Pediartics, Moscow Regional Research Clinical Institute named after M.F. Vladimirsky; Head of the office of the Orphan Diseases Children’s Center, Scientific Research Clinical Institute of Childhood.
61/2, Bldg. 1, Schepkin St., Moscow, 129110; 62, B. Serpukhovskaya St., Moscow, 115093
A. N. Kolchina
Russian Federation
Anastasia N. Kolchina - Cand. Sci. (Med.), Assistant of the Department of Hospital Pediatrics, Privolzhsky Research Medical University.
10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603950
References
1. Strokova TV, Zhurkova NV, Pavlovskaya EV, Kaganov BS. Inherited metabolic diseases of the liver: 1. Disorders of carbohydrate metabolism; 2. Lysosomal storage diseases. Clinical Practice in Pediatrics. 2009;4(5):28–37. (In Russ.) Available at: https://raspm.ru/files/articles/2009/5/4_5_3.pdf.
2. vom Dahl S, Mengel E. Lysosomal storage diseases as differential diagnosis of hepatosplenomegaly. Best Pract Res Clin Gastroenterol. 2010;24(5):619–628. https://doi.org/10.1016/j.bpg.2010.09.001.
3. Ferreira CR, Cassiman D, Blau N. Clinical and biochemical footprints of inherited metabolic diseases. II. Metabolic liver diseases. Mol Genet Metab. 2019;127(2):117–121. https://doi.org/10.1016/j.ymgme.2019.04.002.
4. Sen Sarma M, Tripathi PR. Natural history and management of liver dysfunction in lysosomal storage disorders. World J Hepatol. 2022;14(10):1844–1861. https://doi.org/10.4254/wjh.v14.i10.1844.
5. Szymańska-Rożek P, Czartoryska B, Kleinotiene G, Lipiński P, Tylki-Szymańska A, Ługowska A. A 20-Year Longitudinal Study of Plasma Chitotriosidase Activity in Treated Gaucher Disease Type 1 and 3 Patients-A Qualitative and Quantitative Approach. Biomolecules. 2023;13(3):436. https://doi.org/10.3390/biom13030436.
6. Jezela-Stanek A, Kleinotiene G, Chwialkowska K, Tylki-Szymańska A. Do Not Miss the (Genetic) Diagnosis of Gaucher Syndrome: A Narrative Review on Diagnostic Clues and Management in Severe Prenatal and Perinatal-Lethal Sporadic Cases. J Clin Med. 2021;10(21):4890. https://doi.org/10.3390/jcm10214890.
7. Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci. 2023;15:1072046. https://doi.org/10.3389/fnmol.2022.1072046.
8. Szymańska E, Lipiński P, Rokicki D, Książyk J, Tylki-Szymańska A. Over 20-Year Follow-up of Patients with Hepatic Glycogen Storage Diseases: Single-Center Experience. Diagnostics. 2020;10(5):297. https://doi.org/10.3390/diagnostics10050297.
9. Gardin A, Remih K, Gonzales E, Andersson ER, Strnad P. Modern therapeutic approaches to liver-related disorders. J Hepatol. 2022;76(6):1392–1409. https://doi.org/10.1016/j.jhep.2021.12.015.
10. Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers. 2018;4(1):27. https://doi.org/10.1038/s41572-018-0025-4.
11. Yoldas Celik M, Yazici H, Erdem F, Yuksel Yanbolu A, Canda E, Sezer E et al. Splenomegaly and progressive neurologic involvement: Think about Niemann-Pick type C disease. Pediatr Int. 2024;66(1):e15832. https://doi.org/10.1111/ped.15832.
12. Schlotawa L, Adang LA, Radhakrishnan K, Ahrens-Nicklas RC. Multiple Sulfatase Deficiency: A Disease Comprising Mucopolysaccharidosis, Sphingolipidosis, and More Caused by a Defect in Posttranslational Modification. Int J Mol Sci. 2020;21(10):3448. https://doi.org/10.3390/ijms21103448.
13. McGovern MM, Avetisyan R, Sanson BJ, Lidove O. Disease manifestations and burden of illness in patients with acid sphingomyelinase deficiency (ASMD). Orphanet J Rare Dis. 2017;12(1):41. https://doi.org/10.1186/s13023-017-0572-x.
14. Pericleous M, Kelly C, Wang T, Livingstone C, Ala A. Wolman’s disease and cholesteryl ester storage disorder: the phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol Hepatol. 2017;2(9):670–679. https://doi.org/10.1016/S2468-1253(17)30052-3.
15. Sen Sarma M, Tripathi PR. Natural history and management of liver dysfunction in lysosomal storage disorders. World J Hepatol. 2022;14(10):1844–1861. https://doi.org/10.4254/wjh.v14.i10.1844.
16. Wang NL, Lin J, Chen L, Lu Y, Xie XB, Abuduxikuer K, Wang JS. Neonatal cholestasis is an early liver manifestation of children with acid sphingomyelinase deficiency. BMC Gastroenterol. 2022;22(1):227. https://doi.org/10.1186/s12876-022-02310-0.
17. Daykin EC, Ryan E, Sidransky E. Diagnosing neuronopathic Gaucher disease: New considerations and challenges in assigning Gaucher phenotypes. Mol Genet Metab. 2021;132(2):49–58. https://doi.org/10.1016/j.ymgme.2021.01.002.
18. Tylki-Szymańska A, Vellodi A, El-Beshlawy A, Cole JA, Kolodny E. Neuronopathic Gaucher disease: demographic and clinical features of 131 patients enrolled in the International Collaborative Gaucher Group Neurological Outcomes Subregistry. J Inherit Metab Dis. 2010;33(4):339–346. https://doi.org/10.1007/s10545-009-9009-66.
19. Lipiński P, Szymańska-Rożek P, Socha P, Tylki-Szymańska A. Controlled attenuation parameter and liver stiffness measurements using transient elastography by FibroScan in Gaucher disease. Mol Genet Metab. 2020;129(2):125–131. https://doi.org/10.1016/j.ymgme.2019.10.0133.
20. Nascimbeni F, Cassinerio E, Dalla Salda A, Motta I, Bursi S, Donatiello S et al. Prevalence and predictors of liver fibrosis evaluated by vibration controlled transient elastography in type 1 Gaucher disease. Mol Genet Metab. 2018;125(1-2):64–72. https://doi.org/10.1016/j.ymgme.2018.08.004.
21. McGovern MM, Avetisyan R, Sanson BJ, Lidove O. Disease manifestations and burden of illness in patients with acid sphingomyelinase deficiency (ASMD). Orphanet J Rare Dis. 2017;12(1):41. https://doi.org/10.1186/s13023-017-0572-x.
22. Geberhiwot T, Wasserstein M, Wanninayake S, Bolton SC, Dardis A, Lehman A et al. Consensus clinical management guidelines for acid sphingomyelinase deficiency (Niemann-Pick disease types A, B and A/B). Orphanet J Rare Dis. 2023;18(1):85. https://doi.org/10.1186/s13023-023-02686-6.
23. Wasserstein M, Dionisi-Vici C, Giugliani R, Hwu WL, Lidove O, Lukacs Z et al. Recommendations for clinical monitoring of patients with acid sphingomyelinase deficiency (ASMD). Mol Genet Metab. 2019;126(2):98–105. https://doi.org/10.1016/j.ymgme.2018.11.014.
24. Lipiński P, Kuchar L, Zakharova EY, Baydakova GV, Ługowska A, Tylki-Szymańska A. Chronic visceral acid sphingomyelinase deficiency (Niemann-Pick disease type B) in 16 Polish patients: long-term follow-up. Orphanet J Rare Dis. 2019;14(1):55. https://doi.org/10.1186/s13023-019-1029-1.
25. Seker Yilmaz B, Baruteau J, Rahim AA, Gissen P. Clinical and Molecular Features of Early Infantile Niemann Pick Type C Disease. Int J Mol Sci. 2020;21(14):5059. https://doi.org/10.3390/ijms21145059.
26. López de Frutos L, Cebolla JJ, de Castro-Orós I, Irún P, Giraldo P. Neonatal cholestasis and Niemann-pick type C disease: A literature review. Clin Res Hepatol Gastroenterol. 2021;45(6):101757. https://doi.org/10.1016/j.clinre.2021.101757.
27. Berry-Kravis E. Niemann-Pick Disease, Type C: Diagnosis, Management and Disease-Targeted Therapies in Development. Semin Pediatr Neurol. 2021;37:100879. https://doi.org/10.1016/j.spen.2021.100879.
28. Tylki-Szymańska A, Jurecka A. Lysosomal acid lipase deficiency: wolman disease and cholesteryl ester storage disease. Pril. 2014;35(1):99–106. Available at: https://pubmed.ncbi.nlm.nih.gov/24798600.
29. Santos Silva E, Klaudel-Dreszler M, Bakuła A, Oliva T, Sousa T, Fernandes PC et al. Early onset lysosomal acid lipase deficiency presenting as secondary hemophagocytic lymphohistiocytosis: Two infants treated with sebelipase alfa. Clin Res Hepatol Gastroenterol. 2018;42(5):e77–e82. https://doi.org/10.1016/j.clinre.2018.03.012.
30. Jones SA, Rojas-Caro S, Quinn AG, Friedman M, Marulkar S, Ezgu F et al. Survival in infants treated with sebelipase Alfa for lysosomal acid lipase deficiency: an open-label, multicenter, dose-escalation study. Orphanet J Rare Dis. 2017;12(1):25. https://doi.org/10.1186/s13023-017-0587-3.
31. Lipiński P, Ługowska A, Zakharova EY, Socha P, Tylki-Szymańska A. Diagnostic Algorithm for Cholesteryl Ester Storage Disease: Clinical Presentation in 19 Polish Patients. J Pediatr Gastroenterol Nutr. 2018;67(4):452–457. https://doi.org/10.1097/MPG.0000000000002084.
32. Lipiński P, Cielecka-Kuszyk J, Bożkiewicz-Kasperczyk A, Perkowska B, Jurkiewicz E, Tylki-Szymańska A. Progressive macrophage accumulation in lysosomal acid lipase deficiency. Mol Genet Metab Rep. 2020;23:100594. https://doi.org/10.1016/j.ymgmr.2020.100594.
33. Balwani M, Balistreri W, D’Antiga L, Evans J, Ros E, Abel F, Wilson DP. Lysosomal acid lipase deficiency manifestations in children and adults: Baseline data from an international registry. Liver Int. 2023;43(7):1537–1547. https://doi.org/10.1111/liv.15620.
34. Foster D, Williams L, Arnold N, Larsen J. Therapeutic developments for neurodegenerative GM1 gangliosidosis. Front Neurosci. 2024;18:1392683. https://doi.org/10.3389/fnins.2024.1392683.
35. Guo Z. Ganglioside GM1 and the Central Nervous System. Int J Mol Sci. 2023;24(11):9558. https://doi.org/10.3390/ijms24119558.
36. Vasques JF, de Jesus Gonçalves RG, da Silva-Junior AJ, Martins RS, Gubert F, Mendez-Otero R. Gangliosides in nervous system development, regeneration, and pathologies. Neural Regen Res. 2023;18(1):81–86. https://doi.org/10.4103/1673-5374.343890.
37. Godbole NP, Haxton E, Rowe OE, Locascio JJ, Schmahmann JD, Eichler FS et al. Clinical and imaging predictors of late-onset GM2 gangliosidosis: A scoping review. Ann Clin Transl Neurol. 2024;11(1):207–224. https://doi.org/10.1002/acn3.51947.
38. Solovyeva VV, Shaimardanova AA, Chulpanova DS, Kitaeva KV, Rizvanov AA. Tay-Sachs disease: diagnostic, modeling and treatment approaches. Genes and Cells. 2020;15(1):17–22. (In Russ.) https://doi.org/10.23868/202003002.
39. Howie AH, Tingley K, Inbar-Feigenberg M, Mitchell JJ, Angel K, Gentle J et al. Review of clinical trials and guidelines for children and youth with mucopolysaccharidosis: outcome selection and measurement. Orphanet J Rare Dis. 2024;19(1):393. https://doi.org/10.1186/s13023-024-03364-x.
40. Gadzhikerimov GE, Al-zrir K, Gumenyuk OI, Chernenkov YuV. Evaluation of the effectiveness of screening for mucopolysaccharidoses in children. Russian Bulletin of Perinatology and Pediatrics. 2021;66(4):240–241. (In Russ.) https://doi.org/10.21508/1027-4065-congress-2021.
41. Costi S, Caporali RF, Marino A. Mucopolysaccharidosis: What Pediatric Rheumatologists and Orthopedics Need to Know. Diagnostics. 2022;13(1):75. https://doi.org/10.3390/diagnostics13010075.
42. Rintz E, Banacki M, Ziemian M, Kobus B, Wegrzyn G. Causes of death in mucopolysaccharidoses. Mol Genet Metab. 2024;142(3):108507. https://doi.org/10.1016/j.ymgme.2024.108507.
43. Herbst ZM, Hong X, Sadilek M, Fuller M, Gelb MH. Newborn screening for the full set of mucopolysaccharidoses in dried blood spots based on first-tier enzymatic assay followed by second-tier analysis of glycosaminoglycans. Mol Genet Metab. 2023;140(3):107698. https://doi.org/10.1016/j.ymgme.2023.107698.
44. Dardis A, Michelakakis H, Rozenfeld P, Fumic K, Wagner J, Pavan E et al. Patient centered guidelines for the laboratory diagnosis of Gaucher disease type 1. Orphanet J Rare Dis. 2022;17(1):442. https://doi.org/10.1186/s13023-022-02573-6.
45. Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers. 2018;4(1):27. https://doi.org/10.1038/s41572-018-0025-4.
46. Fernández-Pereira C, San Millán-Tejado B, Gallardo-Gómez M, Pérez-Márquez T, Alves-Villar M, Melcón-Crespo C et al. Therapeutic Approaches in Lysosomal Storage Diseases. Biomolecules. 2021;11(12):1775. https://doi.org/10.3390/biom11121775.
47. Kishnani PS, Al-Hertani W, Balwani M, Göker-Alpan Ö, Lau HA, Wasserstein M et al. Screening, patient identification, evaluation, and treatment in patients with Gaucher disease: Results from a Delphi consensus. Mol Genet Metab. 2022;135(2):154–162. https://doi.org/10.1016/j.ymgme.2021.12.009.
48. Diaz GA, Giugliani R, Guffon N, Jones SA, Mengel E, Scarpa M et al. Long-term safety and clinical outcomes of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency: two-year results. Orphanet J Rare Dis. 2022;17(1):437. https://doi.org/10.1186/s13023-022-02587-0.
49. Patterson MC, Vecchio D, Jacklin E, Abel L, Chadha-Boreham H, Luzy C et al. Long-term miglustat therapy in children with Niemann-Pick disease type C. J Child Neurol. 2010;25(3):300–305. https://doi.org/10.1177/0883073809344222.
50. Cox TM, Charrow J, Lukina E, Mistry PK, Foster MC, Peterschmitt MJ. Long-term effects of eliglustat on skeletal manifestations in clinical trials of patients with Gaucher disease type 1. Genet Med. 2023;25(2):100329. https://doi.org/10.1016/j.gim.2022.10.011.
51. Valayannopoulos V, Malinova V, Honzík T, Balwani M, Breen C, Deegan PB et al. Sebelipase alfa over 52 weeks reduces serum transaminases, liver volume and improves serum lipids in patients with lysosomal acid lipase deficiency. J Hepatol. 2014;61(5):1135–1142. https://doi.org/10.1016/j.jhep.2014.06.022.
52. Liu Y, Luo Y, Xia L, Qiu B, Zhou T, Feng M et al. The Effects of Liver Transplantation in Children With Niemann-Pick Disease Type B. Liver Transpl. 2019;25(8):1233–1240. https://doi.org/10.1002/lt.25457.
53. Sitarska D, Tylki-Szymańska A, Ługowska A. Treatment trials in Niemann-Pick type C disease. Metab Brain Dis. 2021;36(8):2215–2221. https://doi.org/10.1007/s11011-021-00842-0.
54. Modin L, Ng V, Gissen P, Raiman J, Pfister ED, Das A et al. A Case Series on Genotype and Outcome of Liver Transplantation in Children with Niemann-Pick Disease Type C. Children. 2021;8(9):819. https://doi.org/10.3390/children8090819.
55. Lam P, Ashbrook A, Zygmunt DA, Yan C, Du H, Martin PT. Therapeutic efficacy of rscAAVrh74.miniCMV.LIPA gene therapy in a mouse model of lysosomal acid lipase deficiency. Mol Ther Methods Clin Dev. 2022;26:413–426. https://doi.org/10.1016/j.omtm.2022.08.001.
56. Laurent M, Harb R, Jenny C, Oustelandt J, Jimenez S, Cosette J et al. Rescue of Lysosomal Acid Lipase Deficiency in Mice by rAAV8 Liver Gene Transfer. Commun Med. 2025;5(1):110. https://doi.org/10.1038/s43856-025-00816-8.
57. Kulkarni A, Chen T, Sidransky E, Han TU. Advancements in Viral Gene Therapy for Gaucher Disease. Genes. 2024;15(3):364. https://doi.org/10.3390/genes15030364.
58. Miranda CJ, McIntosh J, Kia A, Canavese M, Foley J, Leeb D et al. Liver Directed AAV Gene Therapy to Treat Gaucher Disease. Blood. 2019;134:3354. https://doi.org/10.1182/blood-2019-124280.
Review
For citations:
Martynovich NN, Kolchina AN. Clinical polymorphism of storage diseases: A diferential diagnostic algorithm. Meditsinskiy sovet = Medical Council. 2025;(11):228-236. (In Russ.) https://doi.org/10.21518/ms2025-217