Preview

Meditsinskiy sovet = Medical Council

Advanced search

Therapeutic potential of plasmapheresis in lupus erythematosus: Biomarkers and follow-up control

https://doi.org/10.21518/ms2025-372

Abstract

Introduction. Lupus erythematosus (LE) is a heterogeneous autoimmune disease, and pro-inflammatory cytokines play important roles in its pathogenesis. Despite numerous studies, the features of the cytokine profile in cutaneous LE (CLE), as well as its changes in response to plasmapheresis, remain unclear.

Aim. To assess the levels of IL-17A, IL-31, IL-13 and IL-10 in patients with discoid (DLE) and systemic (SLE) LE, as well as changes in their levels at different time points after membrane plasmapheresis.

Materials and methods. The study included 30 patients (21 with DLE, 9 with SLE), who were treated at the Moscow Scientific and Practical Center for Dermatovenereology and Cardiology of the Moscow Health Department. Cytokine levels were assessed before treatment, after the first plasmapheresis procedure, and at 14 days. The results were compared with reference values.

Results. Patients with DLE showed elevated levels of IL-17A and IL-31 at baseline. After the first procedure, a decrease in IL-17A and IL-13 with a sharp increase in IL-31 were observed. At 14 days, IL-17A and IL-10 levels continued to decrease, IL-13 levels recovered to baseline, and IL-31 levels remained elevated. In patients with SLE, a moderate decrease in IL-17A and an increase in IL-13 and IL-10 were observed. At 14 days, IL-17A and IL-10 levels decreased, IL-13 levels demonstrated significant fluctuations, and IL-31 levels remained stable in both cases.

Conclusions. Plasmapheresis has been shown to have a modulating effect on cytokine levels in patients with LE. IL-31 and IL-10 can be considered potential biomarkers of disease activity and systemic progression. The data obtained support the feasibility of plasmapheresis in the therapy of resistant forms of LE.

About the Authors

E. S. Mikheeva
Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Eleonora S. Mikheeva - Postgraduate Student of the Department of Dermatovenerology, Allergology and Cosmetology at the Medical Institute.

6, Miklukho-Maklai St., Moscow, 117198



A. S. Cheh
Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology
Russian Federation

Alexander S. Cheh – Transfusiologist.

17, Leninsky Ave., Moscow, 119071



O. V. Zhukova
Peoples’ Friendship University of Russia named after Patrice Lumumba; Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology
Russian Federation

Olga V. Zhukova - Dr. Sci. (Med.), Professor, Head of the Department of Dermatovenerology, Allergology and Cosmetology at the Medical Institute, PFUR named after Patrice Lumumba; Chief Medical Officer, Moscow Scientific and Practical Center of Dermatovenereology and Cosmetology;

6, Miklukho-Maklai St., Moscow, 117198; 17, Leninsky Ave., Moscow, 119071



I. M. Korsunskaya
Center for Theoretical Problems of Physical and Chemical Pharmacology of Russian Academy of Sciences
Russian Federation

Irina M. Korsunskaya - Dr. Sci. (Med.), Professor, Head of the Laboratory.

30, Srednyaya Kalitnikovskaya St., Moscow, 109029



References

1. Abdelmalik B, Svoboda S, Gurnani P, Motaparthi K. Successful treatment of recalcitrant cutaneous lupus erythematosus with anifrolumab in patients without systemic lupus erythematosus. JAAD Case Rep. 2024;55:57–61. https://doi.org/10.1016/j.jdcr.2024.11.014.

2. Perray L, Dorgham K, Mathian A, Grolleau C, Le Buanec H, Bouaziz JD et al. Identification of Serum IFN-α and BAFF Levels as Potential Biomarkers of Activity and Severity in Cutaneous Lupus Erythematosus. J Invest Dermatol. 2025;145(8):2078-2082.e7. https://doi.org/10.1016/j.jid.2024.11.022.

3. Stull C, Sprow G, Werth VP. Cutaneous Involvement in Systemic Lupus Erythematosus: A Review for the Rheumatologist. J Rheumatol. 2023;50(1):27–35. https://doi.org/10.3899/jrheum.220089.

4. Zhang SJ, Xu RY, Kang LL. Biomarkers for systemic lupus erythematosus: A scoping review. Immun Inflamm Dis. 2024;12(10):e70022. https://doi.org/10.1002/iid3.70022.

5. Mathian A, Mouries-Martin S, Dorgham K, Devilliers H, Yssel H, Garrido Castillo L et al. Ultrasensitive serum interferon-α quantification during SLE remission identifies patients at risk for relapse. Ann Rheum Dis. 2019;78(12):1669–1676. https://doi.org/10.1136/annrheumdis-2019-215571.

6. Murat de Montai Q, Masseran C, Perray L, Mathian A, Dorgham K, Gorochov G et al. Interferon-α biological activity is associated with disease activity and risk of flare in cutaneous lupus erythematosus: A monocentric study of 184 patients. J Am Acad Dermatol. 2025;92(5):1039–1048. https://doi.org/10.1016/j.jaad.2024.12.041.

7. Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C et al. Interferonregulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 2009;60(10):3098–3107. https://doi.org/10.1002/art.24803.

8. Chun HY, Chung JW, Kim HA, Yun JM, Jeon JY, Ye YM et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol. 2007;27(5):461–466. https://doi.org/10.1007/s10875-007-9104-0.

9. Mathian A, Mouries-Martin S, Dorgham K, Devilliers H, Barnabei L, Ben Salah E et al. Monitoring Disease Activity in Systemic Lupus Erythematosus With Single-Molecule Array Digital Enzyme-Linked Immunosorbent Assay Quantification of Serum Interferon-α. Arthritis Rheumatol. 2019;71(5):756–765. https://doi.org/10.1002/art.40792.

10. Chasset F, Mathian A, Dorgham K, Ribi C, Trendelenburg M, Huynh-Do U et al. Serum interferon-α levels and IFN type I-stimulated genes score perform equally to assess systemic lupus erythematosus disease activity. Ann Rheum Dis. 2022;81(6):901–903. https://doi.org/10.1136/annrheumdis2021-221835.

11. Justiz Vaillant AA, Qurie A. Interleukin. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025.

12. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E et al. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011;127(3):701–721. https://doi.org/10.1016/j.jaci.2010.11.050.

13. Sippl N, Faustini F, Rönnelid J, Turcinov S, Chemin K, Gunnarsson I, Malmström V. Arthritis in systemic lupus erythematosus is characterized by local IL-17A and IL-6 expression in synovial fluid. Clin Exp Immunol. 2021;205(1):44–52. https://doi.org/10.1111/cei.13585.

14. Kato H, Perl A. Double-Edged Sword: Interleukin-2 Promotes T Regulatory Cell Differentiation but Also Expands Interleukin-13and Interferon-γProducing CD8+ T Cells via STAT6-GATA-3 Axis in Systemic Lupus Erythematosus. Front Immunol. 2021;12:635531. https://doi.org/10.3389/fimmu.2021.635531.

15. Biswas S, Bieber K, Manz RA. IL-10 revisited in systemic lupus erythematosus. Front Immunol. 2022;13:970906. https://doi.org/10.3389/fimmu.2022.970906.

16. Winikajtis-Burzyńska A, Brzosko M, Przepiera-Będzak H. Increased Serum Interleukin 10 Levels Are Associated with Increased Disease Activity and Increased Risk of Anti-SS-A/Ro Antibody Positivity in Patients with Systemic Lupus Erythematosus. Biomolecules. 2023;13(6):974. https://doi.org/10.3390/biom13060974.

17. McCarthy EM, Smith S, Lee RZ, Cunnane G, Doran MF, Donnelly S et al. The Association of Cytokines with Disease Activity and Damage Scores in Systemic Lupus Erythematosus Patients. Rheumatology. 2014;53:1586–1594. https://doi.org/10.1093/rheumatology/ket428.

18. Iyer SS, Cheng G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit Rev Immunol. 2012;32:23–63. https://doi.org/10.1615/critrevimmunol.v32.i1.30.

19. Quan W, An J, Li G, Qian G, Jin M, Feng C et al. Th cytokine profile in childhoodonset systemic lupus erythematosus. BMC Pediatr. 2021;21(1):187. https://doi.org/10.1186/s12887-021-02659-3.

20. Hashemi S, Habibagahi Z, Heidari M, Abdollahpour-Alitappeh M, Karimi MH. Effects of combined aerobic and anaerobic exercise training on cytokine profiles in patients with systemic lupus erythematosus (SLE); a randomized controlled trial. Transpl Immunol. 2022;70:101516. https://doi.org/10.1016/j.trim.2021.101516.

21. Kuzumi A, Yoshizaki A, Matsuda KM, Kotani H, Norimatsu Y, Fukayama M et al. Interleukin-31 promotes fibrosis and T helper 2 polarization in systemic sclerosis. Nat Commun. 2021;12(1):5947. https://doi.org/10.1038/s41467-021-26099-w.

22. Akdis M, Aab A, Altunbulakli C, Azkur K, Costa RA, Crameri R et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2016;138(4):984–1010. https://doi.org/10.1016/j.jaci.2016.06.033.

23. Cornelissen C, Lüscher-Firzlaff J, Baron JM, Lüscher B. Signaling by IL-31 and functional consequences. Eur J Cell Biol. 2012;91(6-7):552–566. https://doi.org/10.1016/j.ejcb.2011.07.006.

24. Takahashi S, Ochiai S, Jin J, Takahashi N, Toshima S, Ishigame H et al. Sensory neuronal STAT3 is critical for IL-31 receptor expression and inflammatory itch. Cell Rep. 2023;42(12):113433. https://doi.org/10.1016/j.celrep.2023.113433.

25. Clements PJ, Lachenbruch PA, Seibold JR, Zee B, Steen VD, Brennan P et al. Skin thickness score in systemic sclerosis: an assessment of interobserver variability in 3 independent studies. J Rheumatol. 1993;20(11):1892–1896. Available at: https://pubmed.ncbi.nlm.nih.gov/8308774.

26. O’Reilly S, Hügle T, van Laar JM. T cells in systemic sclerosis: a reappraisal. Rheumatology. 2012;51(9):1540–1549. https://doi.org/10.1093/rheumatology/kes090.

27. Yaseen B, Lopez H, Taki Z, Zafar S, Rosario H, Abdi BA et al. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology. 2020;59(9):2625–2636. https://doi.org/10.1093/rheumatology/keaa195.

28. Damiati LA, Denetiu I, Bahlas S, Damiati S, Pushparaj PN. Immunoprofiling of cytokines, chemokines, and growth factors in female patients with systemic lupus erythematosus – a pilot study. BMC Immunol. 2023;24(1):13. https://doi.org/10.1186/s12865-023-00551-6.

29. Akhter S, Tasnim FM, Islam MN, Rauf A, Mitra S, Emran TB et al. Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-immune Diseases. Curr Pharm Des. 2023;29(26):2078–2090. https://doi.org/10.2174/1381612829666230904150808.

30. Shibabaw T. Inflammatory Cytokine: IL-17A Signaling Pathway in Patients Present with COVID-19 and Current Treatment Strategy. J Inflamm Res. 2020;13:673–680. https://doi.org/10.2147/JIR.S278335.

31. Chuang HC, Lan KY, Hsu PM, Chen MH, Chen YM, Yen JH et al. UHRF1P contributes to IL-17A-mediated systemic lupus erythematosus via UHRF1MAP4K3 axis. J Autoimmun. 2024;146:103221. https://doi.org/10.1016/j.jaut.2024.103221.

32. Altobelli C, Anastasio P, Cerrone A, Signoriello E, Lus G, Pluvio C et al. Therapeutic Plasmapheresis: A Revision of Literature. Kidney Blood Press Res. 2023;48(1):66–78. https://doi.org/10.1159/000528556.

33. Dong J, Huang L, Li C, Wu B, Yang X, Ge Y. Clinical efficacy of centrifugalmembranous hybrid double filtration plasmapheresis and membranous double filtration plasmapheresis on severe lupus nephritis. Lupus. 2023;32(9):1066–1074. https://doi.org/10.1177/09612033231187229.

34. Ahmed S, Kaplan A. Therapeutic Plasma Exchange Using Membrane Plasma Separation. Clin J Am Soc Nephrol. 2020;15(9):1364–1370. https://doi.org/10.2215/CJN.12501019.

35. Ponce D, Zamoner W, Magalhães LE, de Oliveira PGS, Polla P, Barbosa AN et al. Kinetics of Plasma Cytokines During Two Different Modalities of Extracorporeal Blood Purification in the Critically Ill Covid 19 Patients: A Cohort Study. Int J Nephrol Renovasc Dis. 2022;15:309–317. https://doi.org/10.2147/IJNRD.S382776.

36. Калинин НН (ред.). Клиническое применение экстракорпоральных методов лечения. М.; 2006. 164 с.

37. Saito T, Takatsuji R, Murayama G, Yamaji Y, Hagiwara Y, Nishioka Y et al. Double-filtration plasmapheresis reduces type I interferon bioavailability and inducing activity in systemic lupus erythematosus. Immunol Med. 2024;47(4):264–274. https://doi.org/10.1080/25785826.2024.2372918.

38. Lin X, Tang X, Su F, Shi T, Zeng D, Liu S. Efficacy of double filtration plasmapheresis combined with immunosuppressive agents in the treatment of severe lupus nephritis. Am J Transl Res. 2024;16(12):7757–7764. https://doi.org/10.62347/SSTO6670.

39. Tsai PS, Chen Y, Chen SY, Hsu CY, Wu JE, Lee CC, Chan TM. Plasmapheresis for a Patient with Catatonia and Systemic Lupus Erythematosus: A Case Report and Literature Review. J Clin Med. 2022;11(22):6670. https://doi.org/10.3390/jcm11226670.

40. Liu Y, Li W, Zhou K, Hu Z. Reverse complete heart block using transcutaneous pacing and repeated plasmapheresis in a neonate with lupus: a case report. Pediatr Rheumatol Online J. 2023;21(1):135. https://doi.org/10.1186/s12969-023-00920-w.


Review

For citations:


Mikheeva ES, Cheh AS, Zhukova OV, Korsunskaya IM. Therapeutic potential of plasmapheresis in lupus erythematosus: Biomarkers and follow-up control. Meditsinskiy sovet = Medical Council. 2025;(14):108-115. (In Russ.) https://doi.org/10.21518/ms2025-372

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)