Revealing the key factors associated with acne development and treatment with a fixed combination adapalene + metronidazole
https://doi.org/10.21518/ms2025-340
Abstract
Introduction. The search for an effective approach to the treatment of аcne vulgaris is complicated by the complex interaction of factors influencing the course and outcome of the disease.
Aim. To identify key associations of acne development factors and severity by reconstructing a Bayesian network and analyzing the results of treatment with a fixed combination of adapalene 0.1% + metronidazole 1% (Metrogyl® A gel).
Materials and methods. The study was conducted from 2023 to 2025 in Kazan, 650 patients with acne were included, the average age was 23 ± 3.7 years. The independent parameters included: general characteristics, medical history, various clinical parameters depending on independent ones included: laboratory parameters, morphofunctional parameters and composition of the microbiota of the facial skin. The resulting parameters of the model were clinical characteristics and dermatological indices. At the first stage, a nonparametric Bayesian network was reconstructed. At the second stage, a group of patients with mild to moderate acne (n = 56) were treated with adapalene 0.1% + metronidazole 1% gel for 12 weeks.
Results. The factors influencing the development and course of acne were identified, and two clusters of highly related features that describe the influence of hormone-associated and microbial pathogenesis factors were formed. Topical therapy in the group of patients with mild and moderate acne who had disorders of the skin microbiome (n = 56) with adapalene 0.1% + metronidazole 1% gel was effective: сlinical remission occurred in 60.7% (n = 34), significant improvement in 37.5% (n = 21). Local adverse reactions were characterized by mild severity and did not require drug withdrawal.
Conclusions. The present approach is useful for visualization of complicated relationships between factors and clinical outcomes for analysis of complex relationships between factors and clinical outcomes in the analysis of multifactorial diseases. Based on the results of the analysis, topical acne therapy (adapalene 0.1% + metronidazole 1%, gel) in a group of patients with skin microbiome disorders showed efficacy, safety and good tolerability.
Keywords
About the Authors
I. M. KhismatulinaRussian Federation
Irina M. Khismatulina - Cand. Sci. (Med.), Associate Professor of the Department of Dermatovenerology, Kazan State Medical University; Dermatovenerologist, Family Health 1 LLC;
49, Butlerov St., Kazan, 420012; 15, Chistopolskaya St., Kazan, 420124
S. A. Lisovskaya
Russian Federation
Svetlana A. Lisovskaya - Cand. Sci. (Biol.), Associate Professor of the Department of Microbiology, Kazan SMU; Senior Researcher at the Department of Mycology, Kazan Scientific Research Institute of Epidemiology and Microbiology; Kazan Scientific Research Institute of Epidemiology and Microbiology.
49, Butlerov St., Kazan, 420012; 67, Bolshaya Krasnaya St., Kazan, 420015
Ya. E. German
Russian Federation
Yana E. German - Cand. Sci. (Med.), Associate Professor of the Department of Obstetrics and Gynecology, Kazan State Medical Academy; Chief Medical Officer, Family Health 1 LLC;
36, Butlerov St., Kazan, 420012; 15, Chistopolskaya St., Kazan, 420124
O. A. Kravtsova
Russian Federation
Olga A. Kravtsova - Cand. Sci. (Biol.), Associate Professor of the Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology.
18, Bldg. 1, Kremlevskaya St., Kazan, 420008
A. M. Sinitca
Russian Federation
Aleksandr M. Sinitca - Senior Researcher at the Department of Radio Engineering Systems.
5f, Professor Popov St., St Petersburg, 197022
M. I. Bogachev
Russian Federation
Mikhail I. Bogachev - Dr. Sci. (Eng.), Associate Professor, Principal Researcher at the Department of Radio Engineering Systems.
5f, Professor Popov St., St Petersburg, 197022
A. R. Kayumov
Russian Federation
Airat R. Kayumov - Dr. Sci. (Biol.), Associate Professor, Head of Department of Genetics at the Institute of Fundamental Medicine and Biology.
18, Bldg. 1, Kremlevskaya St., Kazan, 420008
References
1. Chen H, Zhang T, Yin X, Man J, Yang X, Lu M. Magnitude and temporal trend of acne vulgaris burden in 204 countries and territories from 1990 to 2019: an analysis from the Global Burden of Disease Study 2019. Br J Dermatol. 2022;186(4):673–683. https://doi.org/10.1111/bjd.20882.
2. Reynolds RV, Yeung H, Cheng CE, Cook-Bolden F, Desai SR, Druby KM et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2024;90(5):1006.e1–1006.e30. https://doi.org/10.1016/j.jaad.2023.12.017.
3. Chinese Guidelines for the Management of Acne Vulgaris: 2019 Update. Int J Dermatol Venereol. 2019;2(3):129–137. https://doi.org/10.1097/jD9.0000000000000043.
4. Nast A, Dréno B, Bettoli V, Bukvic Mokos Z, Degitz K, Dressler C et al. European evidence based (S3) guideline for the treatment of acne – update 2016 – short version. J Eur Acad Dermatol Venereol. 2016;30(8):1261–1268. https://doi.org/10.1111/jdv.13776.
5. Mallon E, Newton J, Klassen A, Stewart-Brown SL, Ryan T, Finlay A. The quality of life in acne: a comparison with general medical conditions using generic questionnaires. Br J Dermatol. 1999;140(4):672–676. https://doi.org/10.1046/j.1365-2133.1999.02768.x.
6. Cresce ND, Davis SA, Huang WW, Feldman SR. The quality of life impact of acne and rosacea compared to other major medical conditions. J Drugs Dermatol. 2014;13(6):692–697. Available at: https://pubmed.ncbi.nlm.nih.gov/24918559.
7. Eichenfield DZ, Sprague J, Eichenfield LF. Management of acne vulgaris: a review. JAMA. 2021;326(20):2055–2067. https://doi.org/10.1001/jama.2021.17633.
8. Ju Q, Tao T, Hu T, Karadağ AS, Al-Khuzaei S, Chen W. Sex hormones and acne. Clin Dermatol. 2017;35(2):130–137. https://doi.org/10.1016/j.clindermatol.2016.10.004.
9. Heng AHS, Chew FT. Systematic review of the epidemiology of acne vulgaris. Sci Rep. 2020;10(1):5754. https://doi.org/10.1038/s41598-02062715-3.
10. Holland DB, Jeremy A. The role of inflammation in the pathogenesis of acne and acne scarring. Semin Cutan Med Surg. 2005;24(2):79–83. https://doi.org/10.1016/j.sder.2005.03.004.
11. Dréno B, Bettoli V, Araviiskaia E, Sanchez Viera M, Bouloc A. The influence of exposome on acne. J Eur Acad Dermatol Venereol. 2018;32(5):812–819. https://doi.org/10.1111/jdv.14820.
12. Grice EA, Segre JA. The skin microbiome. Nature Rev Microbiol. 2011;9(4):244–253. https://doi.org/10.1038/nrmicro2537.
13. Byrd AL, Belkaid Y, Segre JA. The human skin microbiome. Nat Rev Microbiol. 2018;16(3):143–155. https://doi.org/10.1038/nrmicro.2017.157.
14. Rozas M, Hart de Ruijter A, Fabrega MJ, Zorgani A, Guell M, Paetzold Bet al. From dysbiosis to healthy skin: major contributions of Cutibacterium acnes to skin homeostasis. Microorganisms. 2021;9(3):628. https://doi.org/10.3390/microorganisms9030628.
15. Cavallo I, Sivori F, Truglio M, De Maio F, Lucantoni F, Cardinali G et al. Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci Rep. 2022;12(1):21104. https://doi.org/10.1038/s41598022-25436-3.
16. Di Domenico EG, Farulla I, Prignano G, Gallo MT, Vespaziani M, Cavallo I et al. Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int J Mol Sci. 2017;18(5):1077. https://doi.org/10.3390/ijms18051077.
17. Dréno B. What is new in the pathophysiology of acne, an overview. J Eur Acad Dermatol Venereol. 2017;(31):8–12. https://doi.org/10.1111/jdv.14374.
18. Agak GW, Kao S, Ouyang K, Qin M, Moon D, Butt A et al. Phenotype and antimicrobial activity of Th17 cells induced by Propionibacterium acnes strains associated with healthy and acne skin. J Invest Dermatol. 2018;138(2):316–324. https://doi.org/10.1016/j.jid.2017.07.842.
19. Feidenhansl C, Lund M, Poehlein A, Lood R, Lomholt HB, Brüggemann H. Cutibacterium and Staphylococcus dysbiosis of the skin microbiome in acne and its decline after isotretinoin treatment. JEADV Clin Pract. 2024;3(5):1454–1466. https://doi.org/10.1007/s00403-024-03585-x.
20. Aktaş Karabay E, Aksu Çerman A. Demodex folliculorum infestations in common facial dermatoses: acne vulgaris, rosacea, seborrheic dermatitis. An Bras Dermatol. 2020;95(2):187–193. https://doi.org/10.1016/j.abd.2019.08.023.
21. Guo Z, Yang Y, Wu Q, Liu M, Zhou L, Zhang L et al. New insights into the characteristic skin microorganisms in different grades of acne and different acne sites. Front Microbiol. 2023;14:1167923. https://doi.org/10.3389/fmicb.2023.1167923.
22. Koot P, Mendoza-Lugo MA, Paprotny D, Morales-Nápoles O, Ragno E, Worm DT. PyBanshee version (1.0): A Python implementation of the MATLAB toolbox BANSHEE for Non-Parametric Bayesian Networks with updated features. SoftwareX. 2023;21:101279. https://doi.org/10.1016/j.softx.2022.101279.
23. Bogachev MI, Tishin DV, Gafurov AM, Gareev BI, Imaev RG, Kaplun DI et al. The impact of Grey Heron (Ardea cinerea L.) colony on soil biogeochemistry and vegetation: a natural long-term in situ experiment in a planted pine forest. Front Envir Sci. 2023;11:1197657. https://doi.org/10.3389/fenvs.2023.1197657.
24. Weber P, Medina-Oliva G, Simon C, Iung B. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Eng Appl Artif Intell. 2012;25(4):671–682. https://doi.org/10.1016/j.engappai.2010.06.002.
25. Delgado-Hernández D-J, Morales-Nápoles O, De-León-Escobedo D, Arteaga-Arcos J-C. A continuous Bayesian network for earth dams’ risk assessment: an application. Struct Infrast Eng. 2014;10(2):225–238.
26. Hanea A, Napoles OM, Ababei D. Non-parametric Bayesian networks: Improving theory and reviewing applications. Reliab Eng Syst Saf. 2015;144:265–284. https://doi.org/10.1016/j.ress.2015.07.027.
27. Paprotny D, Morales-Nápoles O. Estimating extreme river discharges in Europe through a Bayesian network. Hydrol Earth Syst Sci. 2017;21(6):2615–2636. https://doi.org/10.5194/hess-21-2615-2017.
28. Cooke RM, Wielicki B. Probabilistic reasoning about measurements of equilibrium climate sensitivity: combining disparate lines of evidence. Clim Change. 2018;151(3):541–554. https://doi.org/10.1007/s10584-018-2315-y.
29. Terefenko P, Paprotny D, Giza A, Morales-Nápoles O, Kubicki A, Walczakiewicz S. Monitoring cliff erosion with LiDAR surveys and Bayesian network-based data analysis. Remote Sensing. 2019;11(7):843. https://doi.org/10.3390/rs11070843.
30. Baba K, Shibata R, Sibuya M. Partial correlation and conditional correlation as measures of conditional independence. Aust New Zealand J Stat. 2004;46(4):657–664. https://doi.org/10.1111/j.1467-842X.2004.00360.x.
31. Baba K, Sibuya M. Equivalence of partial and conditional correlation coefficients. J Japan Stat Society. 2005;35(1):1–19. https://doi.org/10.14490/jjss.35.1.
32. Khismatulina IM, Lisovskaya SA. Study of antimicrobial activity of topical drugs used in the treatment of papulopustular dermatoses of the face. Klinicheskaya Dermatologiya i Venerologiya. 2023;22(2):181–185. (In Russ.) https://doi.org/10.17116/klinderma202322021181.
Review
For citations:
Khismatulina IM, Lisovskaya SA, German YE, Kravtsova OA, Sinitca AM, Bogachev MI, Kayumov AR. Revealing the key factors associated with acne development and treatment with a fixed combination adapalene + metronidazole. Meditsinskiy sovet = Medical Council. 2025;(14):125-135. (In Russ.) https://doi.org/10.21518/ms2025-340