The role of sex hormones in the development of atopic dermatitis in women
https://doi.org/10.21518/ms2025-334
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease that is widespread throughout the world. The disease is more common in women than in men. This difference can be explained by the influence of sex hormones on the functioning of the skin barrier and the immune system. Fluctuations in the concentration of sex hormones correlate with the incidence of AD. During the luteal phase of the menstrual cycle, AD exacerbation or worsening of the disease is more common, which is associated with the production of progesterone and estrogens, and during the follicular phase, AD improves due to the predominant effect of estrogens. During the menstrual cycle, women experience a change in the barrier function of the skin, characterized by dryness, impaired sensitivity, and increased transepidermal water loss, which indicates a pronounced effect of sex hormones on the skin. Sex hormones can stimulate the production of a number of cytokines involved in the formation of skin inflammation and itching. During pregnancy, the immune system is modified to achieve immune tolerance; these changes occur both at the mother-fetus level and in the systemic bloodstream, primarily due to an increase in progesterone concentration during pregnancy. Changes in hormonal levels during pregnancy shift the balance in the immune system, which can be a trigger for the development of AD. Studying hormonal status during AD exacerbation, including during pregnancy, is promising and can contribute to the development of preventive and therapeutic measures.
About the Authors
Yu. A. KandrashkinaRussian Federation
Yulia A. Kandrashkina - Cand. Sci. (Med.), Senior Lecturer, Department of Obstetrics and Gynecology.
40, Krasnaya St., 440026, Penza
E. A. Orlova
Russian Federation
Ekaterina A. Orlova - Dr. Sci. (Med.), Associate Professor, Head of Department of Allergology and Immunology with a Course of Dermatovenereology and Cosmetology.
8a, Stasov St., 440060, Penza
References
1. Furue M, Chiba T, Tsuji G, Ulzii D, Kido-Nakahara M, Nakahara T, Kadono T. Atopic dermatitis: Immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int. 2017;66(3):398–403. https://doi.org/10.1016/j.alit.2016.12.002.
2. Egawa G, Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int. 2018;67(1):3–11. https://doi.org/10.1016/j.alit.2017.10.002.
3. Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66(1):8–16. https://doi.org/10.1159/000370220.
4. Eichenfield LF, Stripling S, Fung S, Cha A, O’Brien A, Schachner LA. Recent Developments and Advances in Atopic Dermatitis: A Focus on Epidemiology, Pathophysiology, and Treatment in the Pediatric Setting. Paediatr Drugs. 2022;24(4):293–305. https://doi.org/10.1007/s40272-022-00499-x.
5. Nenasheva NM. Modern therapy of atopic dermatitis: the role of emollients and antihistamines. Effective Pharmacotherapy. Allergology and Immunology. 2016;1(6):6–14. (In Russ.) Available at: https://umedp.ru/upload/iblock/e5c/zodak.pdf.
6. Flohr C, England K, Radulovic S, McLean WH, Campbel LE, Barker J et al. Filaggrin loss-of-function mutations are associated with early-onset eczema, eczema severity and transepidermal water loss at 3 months of age. Br J Dermatol. 2010;163(6):1333–1336. https://doi.org/10.1111/j.13652133.2010.10068.x.
7. Kobiela A, Hovhannisyan L, Jurkowska P, de la Serna JB, Bogucka A, Deptuła M et al. Excess filaggrin in keratinocytes is removed by extracellular vesicles to prevent premature death and this mechanism can be hijacked by Staphylococcus aureus in a TLR2-dependent fashion. J Extracell Vesicles. 2023;12(6):e12335. https://doi.org/10.1002/jev2.12335.
8. Presland RB, Kuechle MK, Lewis SP, Fleckman P, Dale BA. Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell-cell adhesion, and cell cycle arrest. Exp Cell Res. 2001;270(2):199–213. https://doi.org/10.1006/excr.2001.5348.
9. Yuki T, Tobiishi M, Kusaka-Kikushima A, Ota Y, Tokura Y. Impaired tight junctions in atopic dermatitis skin and in a skin-equivalent model treated with interleukin-17. PLoS ONE. 2016;11:e0161759. https://doi.org/10.1371/journal.pone.0161759.
10. Nomura T, Honda T, Kabashima K. Multipolarity of cytokine axes in the pathogenesis of atopic dermatitis in terms of age, race, species, disease stage and biomarkers. Int Immunol. 2018;30:419–428. https://doi.org/10.1093/intimm/dxy015.
11. Kanda N, Hoashi T, Saeki H. The Roles of Sex Hormones in the Course of Atopic Dermatitis. Int J Mol Sci. 2019;20(19):4660. https://doi.org/10.3390/ijms20194660.
12. Farage MA, Neill S, MacLean AB. Physiological changes associated with the menstrual cycle: A review. Obstet Gynecol Surv. 2009;64(1):58–72. https://doi.org/10.1097/OGX.0b013e3181932a37.
13. Raghunath RS, Venables ZC, Millington GW. The menstrual cycle and the skin. Clin Exp Dermatol. 2015;40(2):111–115. https://doi.org/10.1111/ced.12588.
14. Kiriyama K, Sugiura H, ·Uehara M. Premenstrual deterioration of skin symptoms in female patients with atopic dermatitis. Dermatology. 2003;206(2):110–112. https://doi.org/10.1159/000068463.
15. Farage MA, Berardesca E, Maibach H. The possible relevance of sex hormones on irritant and allergic responses: their importance for skin testing. Contact Dermatitis. 2010;62(2):67–74. https://doi.org/10.1111/j.16000536.2009.01621.x.
16. Bonamonte D, Foti C, Antelmi AR, Biscozzi AM, Naro ED, Fanelli M et al. Nickel contact allergy and menstrual cycle. Contact Dermatitis. 2005;52(6):309–313. https://doi.org/10.1111/j.0105-1873.2005.00588.x.
17. Balakirski G, Novak N. Atopic dermatitis and pregnancy. J Allergy Clin Immunol. 2022;149(4):1185–1194. https://doi.org/10.1016/j.jaci.2022.01.010.
18. Tai P, Wang J, Jin H, Song X, Yan J, Kang Y et al. Induction of regulatory T cells by physiological level estrogen. J Cell Physiol. 2008;214(2):456–464. https://doi.org/10.1002/jcp.21221.
19. Miyaura H, Iwata M. Direct and indirect inhibition of Th1 development by progesterone and glucocorticoids. J Immunol. 2002;168(3):1087–1094. https://doi.org/10.4049/jimmunol.168.3.1087.
20. Kissick HT, Sanda MG, Dunn LK, Pellegrini KL, On ST, Noel JK, Arredouani MS. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc Natl Acad Sci U S A. 2014;111(27):9887–9892. https://doi.org/10.1073/pnas.1402468111.
21. Hepworth MR, Hardman MJ, Grencis RK. The role of sex hormones in the development of Th2 immunity in a gender-biased model of Trichuris muris infection. Eur J Immunol. 2010;40(2):406–416. https://doi.org/10.1002/eji.200939589.
22. Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294(2):87–94. https://doi.org/10.1016/j.cellimm.2015.02.004.
23. Fuseini H, Yung JA, Cephus JY, Zhang J, Goleniewska K, Polosukhin VV et al. Testosterone Decreases House Dust Mite-Induced Type 2 and IL-17AMediated Airway Inflammation. J Immunol. 2018;201(7):1843–1854. https://doi.org/10.4049/jimmunol.1800293.
24. Massa MG, David C, Jörg S, Berg J, Gisevius B, Hirschberg S et al. Testosterone Differentially Affects T Cells and Neurons in Murine and Human Models of Neuroinflammation and Neurodegeneration. Am J Pathol. 2017;187(7):1613–1622. https://doi.org/10.1016/j.ajpath.2017.03.006.
25. Walecki M, Eisel F, Klug J, Baal N, Paradowska-Dogan A, Wahle E et al. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol Biol Cell. 2015;26(15):2845–2857. https://doi.org/10.1091/mbc.E14-08-1323.
26. Dayoub O, Le Lay S, Soleti R, Clere N, Hilairet G, Dubois S et al. Estrogen receptor α/HDAC/NFAT axis for delphinidin effects on proliferation and differentiation of T lymphocytes from patients with cardiovascular risks. Sci Rep. 2017;7(1):9378. https://doi.org/10.1038/s41598-017-09933-4.
27. Matalka KZ. The effect of estradiol, but not progesterone, on the production of cytokines in stimulated whole blood, is concentration-dependent. Neuro Endocrinol Lett. 2003;24(3-4):185–191. Available at: https://pubmed.ncbi.nlm.nih.gov/14523355.
28. Watanabe Y, Tajiki-Nishino R, Tajima H, Fukuyama T. Role of estrogen receptors α and β in the development of allergic airway inflammation in mice: A possible involvement of interleukin 33 and eosinophils. Toxicology. 2019;411:93–100. https://doi.org/10.1016/j.tox.2018.11.002.
29. Lorenz TK, Heiman JR, Demas GE. Sexual activity modulates shifts in TH1/TH2 cytokine profile across the menstrual cycle: an observational study. Fertil Steril. 2015;104(6):1513–21.e214. https://doi.org/10.1016/j.fertnstert.2015.09.001.
30. Hall OJ, Limjunyawong N, Vermillion MS, Robinson DP, Wohlgemuth N, Pekosz A. Progesterone-Based Therapy Protects Against Influenza by Promoting Lung Repair and Recovery in Females. PLoS Pathogens. 2016;12(9):e1005840. https://doi.org/10.1371/journal.ppat.1005840.
31. Sulcová J, Hill M, Hampl R, Stárka L. Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. J Endocrinol. 1997;154(1):57–62. https://doi.org/10.1677/joe.0.1540057.
32. Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, Nassiri-Kashani M et al. Variation of biophysical parameters of the skin with age, gender, and body region. Sci World J. 2012;2012:386936. https://doi.org/10.1100/2012/386936.
33. Chen Y, Yokozeki H, Katagiri K. Physiological and functional changes in the stratum corneum restored by oestrogen in an ovariectomized mice model of climacterium. Exp Dermatol. 2017;26(5):394–401. https://doi.org/10.1111/exd.13214.
34. Kao JS, Garg A, Mao-Qiang M, Crumrine D, Ghadially R, Feingold KR, Elias PM. Testosterone perturbs epidermal permeability barrier homeostasis. J Invest Dermatol. 2001;116(3):443–451. https://doi.org/10.1046/j.15231747.2001.01281.x.
35. Tsutsumi M, Denda M. Paradoxical effects of beta-estradiol on epidermal permeability barrier homeostasis. Br J Dermatol. 2007;157(4):776–779. https://doi.org/10.1111/j.1365-2133.2007.08115.x.
36. Yosipovitch G, Rosen JD, Hashimoto T. Itch: From mechanism to (novel) therapeutic approaches. J Allergy Clin Immunol. 2018;142(5):1375–1390. https://doi.org/10.1016/j.jaci.2018.09.005.
37. Ambros-Rudolph CM, Müllegger RR, Vaughan-Jones SA, Kerl H, Black MM. The specific dermatoses of pregnancy revisited and reclassified: results of a retrospective two-center study on 505 pregnant patients. J Am Acad Dermatol. 2006;54(3):395–404. https://doi.org/10.1016/j.jaad.2005.12.012.
38. Zen M, Ghirardello A, Iaccarino L, Tonon M, Campana C, Arienti S et al. Hormones, immune response, and pregnancy in healthy women and SLE patients. Swiss Med Wkly. 2010;140(13-14):187–201. https://doi.org/10.4414/smw.2010.12597.
39. Khamdamov BZ, Turdyeva DO, Rustamova NB. Synthesis of cytokines during physiological pregnancy. Russian Journal of Immunology. 2024;27(4):853–858 (In Russ.) https://doi.org/10.46235/1028-7221-16954-SOC.
40. Albanova VI, Petrova SY. Features of management of atopic dermatitis in pregnant women. Vestnik Dermatologii i Venerologii. 2023;99(5):29–40. (In Russ.) https://doi.org/10.25208/vdv13279.
41. Mulac-Jericevic B, Conneely OM. Reproductive tissue selective actions of progesterone receptors. Reproduction. 2004;128(2):139–146. https://doi.org/10.1530/rep.1.00189.
42. Mulac-Jericevic B, Mullinax RA, DeMayo FJ, Lydon JP, Conneely OM. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science. 2000;289(5485):1751–1754. https://doi.org/10.1126/science.289.5485.1751.
43. Arruvito L, Giulianelli S, Flores AC, Paladino N, Barboza M, Lanari C, Fainboim L. NK cells expressing a progesterone receptor are susceptible to progesterone-induced apoptosis. J Immunol. 2008;180(8):5746–5753. https://doi.org/10.4049/jimmunol.180.8.5746.
44. Szekeres-Bartho J, Schindler AE. Progestogens and immunology. Best Pract Res Clin Obstet Gynaecol. 2019;60:17–23. https://doi.org/10.1016/j.bpobgyn.2019.07.001.
45. Zajdieva ZS, Prozorov VV, Karapetyan TE. Progesterone support for pregnancy planning in women at high risk of infection. RMJ. 2006;(1):25. (In Russ.) Available at: https://www.rmj.ru/articles/obshchie-stati/Progesteronovaya_podderghka_pri_planirovanii_beremennosti_u_ghenschin_s_vysokim_infekcionnym_riskom.
Review
For citations:
Kandrashkina YA, Orlova EA. The role of sex hormones in the development of atopic dermatitis in women. Meditsinskiy sovet = Medical Council. 2025;(14):146-151. (In Russ.) https://doi.org/10.21518/ms2025-334