Epigenetics of skin aging: from mechanisms to the search for methods of correction
https://doi.org/10.21518/ms2025-338
Abstract
Age-related changes in the body are a complex biological process that requires research at the intersection of various scientific disciplines. Modern science has made significant progress in the study of molecular, cellular, genetic and biochemical mechanisms of aging. This has allowed us to formulate concepts that describe the influence of external factors on the genome and open up prospects for creating methods of functional rejuvenation. A special place among them is occupied by studies aimed at studying the system of regulation of gene activity that is not associated with a change in the nucleotide sequence of DNA, but has a significant impact on gene expression. These issues are addressed by an actively developing scientific discipline – epigenetics. Epigenomic processes reflect the interaction of genotype and phenotype, playing a key role in the adaptation of aging processes in response to environmental influences. At the same time, the skin is a unique model for studying these mechanisms due to its complex structure, constant renewal and direct interaction with external factors. The article provides an analysis of the modern concept of skin aging, in which the idea of the leading role of heredity is combined with new scientific data on the importance of epigenetic regulation. Key epigenetic changes, such as DNA methylation disorders, histone modifications and gene dysregulation mediated by microRNA are considered. It is emphasized that the study of the mechanisms of the influence of environmental factors on the epigenome opens up prospects for finding therapeutic approaches that contribute to the correction and prevention of age-related changes. The effect of lifestyle modification, physiotherapy methods and various chemical compounds on the epigenetic processes of aging is described. It is noted that the correction of the molecular mechanisms of skin aging can provide a sustainable clinical effect and is of particular interest in the development of cosmetics for epigenetic skin care. Attention is focused on the fact that the integration of epigenetic research into aesthetic dermatology allows not only to correct the external signs of aging, but also to influence their deep biological mechanisms.
About the Authors
M. M. TlishRussian Federation
Marina M. Tlish - Dr. Sci. (Med.), Professor, Head of the Department of Dermatovenereology.
4, Mitrofan Sedin St., Krasnodar, 350063
M. E. Shavilova
Russian Federation
Marina E. Shavilova - Cand. Sci. (Med.), Assistant of the Department of Dermatovenereology.
4, Mitrofan Sedin St., Krasnodar, 350063
References
1. Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Sig Transduct Target Ther. 2022;7(1):391. https://doi.org/10.1038/s41392-02201251-0.
2. Cohen AA, Ferrucci L, Fülöp T, Gravel D, Hao N, Kriete A et al. A complex systems approach to aging biology. Nat Aging. 2022;2(7):580–591. https://doi.org/10.1038/s43587-022-00252-6.
3. Agrawal R, Hu A, Bollag WB. The Skin and Inflamm-Aging. Biology. 2023;12(11):1396. https://doi.org/10.3390/biology12111396.
4. Lee H, Hong Y, Kim M. Structural and functional changes and possible molecular mechanisms in aged skin. Int J Mol Sci. 2021;22:12489. https://doi.org/10.3390/ijms222212489.
5. Arnal-Forne M, Molina-Garcia T, Ortega M, Marcos-Garces V, Molina P, Ferrandez-Izquierdo A et al. Changes in human skin composition due to intrinsic aging: a histologic and morphometric study. Histochem Cell Biol. 2024;162(4):259–271. https://doi.org/10.1007/s00418-024-02305-w.
6. Csekes E, Rackova L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int J Mol Sci. 2021;22(23):12641. https://doi.org/10.3390/ijms222312641.
7. Russell-Goldman E, Murphy GF. The pathobiology of skin aging: new insights into an old dilemma. Am J Pathol. 2020;190(7):1356–1369. https://doi.org/10.1016/j.ajpath.2020.03.007.
8. Kumper M, Steinkamp J, Zigrino P. Metalloproteinases in dermal homeostasis. Am J Physiol Cell Physiol. 2022;323(4):C1290–C1303. https://doi.org/10.1152/ajpcell.00450.2021.
9. Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the agerelated deterioration of skin function. Cell Death Dis. 2024;15:443. https://doi.org/10.1038/s41419-024-06818-z.
10. Hou X, Wei Z, Zouboulis CC, Ju Q. Aging in the sebaceous gland. Front Cell Dev Biol. 2022;10:909694. https://doi.org/10.3389/fcell.2022.909694.
11. Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Sig Transduct Target Ther. 2022;7:374. https://doi.org/10.1038/s41392-02201211-8.
12. Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L et al. The landscape of aging. Sci China Life Sci. 2022;65(12):2354–2454. https://doi.org/10.1007/s11427022-2161-3.
13. Song S, Tchkonia T, Jiang J, Kirkland JL, Sun Y. Targeting senescent cells for a healthier aging: challenges and opportunities. Adv Sci. 2020;7(23):2002611. https://doi.org/10.1002/advs.202002611.
14. Grönniger E, Max H, Lyko F. Skin Rejuvenation by Modulation of DNA Methylation. Exp Dermatol. 2024;33(10):e70005. https://doi.org/10.1111/exd.70005.
15. Vladimir K, Perisic MM, Storga M, Mostashari A, Khanin R. Epigenetics insights from perceived facial aging. Clinical Epigenetics.2023;15(1):176. https://doi.org/10.1186/s13148-023-01590-x.
16. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):3156. https://doi.org/10.1186/gb-2013-14-10-r115.
17. Boroni M, Zonari A, Oliveira C, Alkatib K, Ochoa Cruz EA, Brace LE, Carvalho J. Highly accurate skin-specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging. Clin Epigenetics. 2020;12(1):1–16. https://doi.org/10.1186/s13148-020-00899-1.
18. Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiology Reviews. 2016;40(5):575–591. https://doi.org/10.1093/femsre/fuw023.
19. Li Y, Zhang Z, Chen J, Liu W, Lai W, Liu B et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature. 2018;564:136–140. https://doi.org/10.1038/s41586-018-0751-5.
20. Verma N, Pan H, Dore LC, Shukla A, Li QV, Pelham-Webb B et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat Genet. 2018;50:83–95. https://doi.org/10.1038/s41588-017-0002-y.
21. Ginno PA, Gaidatzis D, Feldmann A, Hoerner L, Imanci D, Burger L et al. A genome-scale map of DNA methylation turnover identifies site-specific dependencies of DNMT and TET activity. Nat Commun. 2020;11(1):2680. https://doi.org/10.1038/s41467-020-16354-x.
22. Schübeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321–326. https://doi.org/10.1038/nature14192.
23. Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356(6337):eaaj2239. https://doi.org/10.1126/science.aaj2239.
24. Grönniger E, Weber B, Heil O, Peters N, Stab F, Wenck H et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genetics. 2010;6(5):e1000971. https://doi.org/10.1371/journal.pgen.1000971.
25. Liamry JN, Humardani F, Chandra G, Mulyanata LT, Kok T, Irawati F et al. Exploring the impact of diabetes on aging: insights from TERT and COL1A1 methylation. Turk J Biol. 2024;48(4):257–266. https://doi.org/10.55730/1300-0152.2701.
26. Dermitzakis I, Kyriakoudi SA, Chatzianagnosti S, Chatzi D, Vakirlis E, Meditskou S et al. Epigenetics in skin homeostasis and ageing. Epigenomes. 2025;9(1):3. https://doi.org/10.3390/epigenomes9010003.
27. Shin N-H, Trang DT, Hong W-J, Kang K, Chuluuntsetseg J, Moon J-K et al. Increased histone acetylation and decreased expression of specific histone deacetylases in ultraviolet-irradiated and intrinsically aged human skin in vivo. Int J Mol Sci. 2020;21(1):260. https://doi.org/10.3390/ijms21010260.
28. Bielach-Bazyluk A, Zbroch E, Mysliwiec H, Rydzewska-Rosolowska A, Kakareko K, Flisiak I, Hryszko T. Sirtuin 1 and Skin: Implications in Intrinsic and Extrinsic Aging – A Systematic Review. Cells. 2021;10(4):813. https://doi.org/10.3390/cells10040813.
29. Reolid A, Munoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Dauden E. Epigenetics in non-tumor immune-mediated skin diseases. Mol Diagn Ther. 2021;25(2):137–161. https://doi.org/10.1007/s40291-020-00507-1.
30. Stafa K, Rella A, Eagle W, Dong K, Morris K, Layman D et al. miR-146a is a critical target associated with multiple biological pathways of skin aging. Front Physiol. 2024;15:1291344. https://doi.org/10.3389/fphys.2024.1291344.
31. Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts. 2017;8(5-6):203–212. https://doi.org/10.1515/bmc-2017-0024.
32. Dasgupta N, Arnold R, Equey A, Gandhi A, Adams PD. The role of the dynamic epigenetic landscape in senescence: orchestrating SASP expression. npj Aging. 2024;10:48. https://doi.org/10.1038/s41514-024-00172-2.
33. Chin T, Lee XE, Ng PY, Lee Y, Dreesen O. The role of cellular senescence in skin aging and age-related skin pathologies. Front Physiol. 2023;14:1297637. https://doi.org/10.3389/fphys.2023.1297637.
34. Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34:1565–1576. https://doi.org/10.1101/gad.343129.120.
35. Dal Pozzo L, Xu Z, Lin S, Wang J, Wang Y, Enechojo OS et al. Role of epigenetics in the regulation of skin aging and geroprotective intervention: a new sight. Biomed Pharmacother. 2024;174:116592. https://doi.org/10.1016/j.biopha.2024.116592.
36. Carneiro VC, Lyko F. Rapid Epigenetic Adaptation in Animals and Its Role in Invasiveness. Integr Comp Biol. 2020;60(2):267–274. http://doi.org/10.1016/j.cell.2014.02.045.
37. Haykal D, Flament F, Mora P, Balooch G, Cartier H. Unlocking Longevity in Aesthetic Dermatology: Epigenetics, Aging, and Personalized Care. Int J Dermatol. 2025. https://doi.org/10.1111/ijd.17725.
38. Tlish MM, Sashko MI, Shavilova ME, Boltava AY, Psavok FA. Delayed complication after lip contour plasticity with a hyaluronic acid-based product: a case report. Consilium Medicum. 2025;27(6):333–336. (In Russ.) https://doi.org/10.26442/20751753.2025.6.203309.
39. Tlish MM, Sashko MI, Shavilova MЕ, Katz YuI, Psavok FA. Botulinum toxin in modern cosmetology practice: from high efficiency to the problem of complications (analysis of clinical observation). Vrach. 2024;(4):67–71. (In Russ.) https://doi.org/10.29296/25877305-2024-04-13.
40. Haykal D, Will F, Cartier H, Dahan S. Epigenetic Modifications and the Role of Medical Lasers in Enhancing Skin Regeneration. Int J Dermatol. 2025;24(1):16780. https://doi.org/10.1111/jocd.16780.
41. Tlish MM, Sashko MI, Shavilova ME, Psavok FA. Possibilities of combined (KTP 532 nm and Nd: YAG 1064 nm) laser radiation in complex acne therapy. Lechaschi Vrach. 2022;11(25):11–15. (In Russ.) https://doi.org/10.51793/OS.2022.25.11.002.
42. Kokikian N, Arenzo J, Gasilla J, Shahabi L, Wanagat J, Kim J, Vandiver A. 857 Fractional non-ablative laser has a divergent impact on molecular markers of aging. J Invest Dermatol. 2024;144(8):S149. https://doi.org/10.1016/j.jid.2024.06.873.
43. Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus. 2024;16 (1):e52548. https://doi.org/10.7759/cureus.52548.
44. Moskalev A, Chernyagina E, de Magalhães JP, Barardo D, Thoppil H, Shaposhnikov M et al. Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging. 2015;7(9):616–628. https://doi.org/10.18632/aging.100799.
45. Ummarino S, Hausman C, Gaggi G, Rinaldi L, Bassal MA, Zhang Y et al. NAD modulates DNA methylation and cell differentiation. Cells. 2021;10(11):2986. https://doi.org/10.3390/cells10112986.
46. Oblong JE. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA Repair. 2014;23:59–63. https://doi.org/10.1016/j.dnarep.2014.04.005.
47. Majora M, Sondenheimer K, Knechten M, Uthe I, Esser C, Schiavi A et al. HDAC inhibition improves autophagic and lysosomal function to prevent loss of subcutaneous fat in a mouse model of Cockayne syndrome. Sci Transl Med. 2018;10(456):eaam7510. https://doi.org/10.1126/scitranslmed.aam7510.
48. Gouveri E, Papanas N. Τhe endless beauty of metformin: does it also protect from skin aging? A narrative review. Adv Ther. 2023;40(4):1347–1356. https://doi.org/10.1007/s12325-023-02434-z.
49. Yin Z, Guo X, Qi Y, Li P, Liang S, Xu X, Shang X. Dietary Restriction and Rapamycin Affect Brain Aging in Mice by Attenuating Age-Related DNA Methylation Changes. Genes. 2022;13(4):699. https://doi.org/10.3390/genes13040699.
50. Chung CL, Lawrence I, Hoffman M, Elgindi D, Nadhan K, Potnis M et al. Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience. 2019;41(6):861–869. https://doi.org/10.1007/s11357-019-00113-y.
51. Quan T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules. 2023;13(11):1614. https://doi.org/10.3390/biom13111614.
52. Lovegrove A, Edwards CH, De Noni I, Patel H, El SN, Grassby T et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr. 2017;57(2):237–253. https://doi.org/10.1080/10408398.2014.939263.
53. Feng X, Shang J, Wang Y, Chen Y, Liu Y. Exploring the Properties and Application Potential of β‐Glucan in Skin Care. Food Sci Nutr. 2025;13(4):e70212. https://doi.org/10.1002/fsn3.70212.
54. Zonari A, Brace LE, Al-Katib K, Porto WF, Foyt D, Guiang M et al. Senotherapeutic peptide treatment reduces biological age and senescence burden in human skin models. NPJ Aging. 2023;9(1):10. https://doi.org/10.1038/s41514-023-00109-1.
55. Jacczak B, Rubis B, Totoń E. Potential of Naturally Derived Compounds in Telomerase and Telomere Modulation in Skin Senescence and Aging. Int J Mol Sci. 2021;22(12):6381. https://doi.org/10.3390/ijms22126381.
56. Tarwadi KV, Agte VV. Effect of micronutrients on methylglyoxal-mediated in vitro glycation of albumin. Biol Trace Elem Res. 2011;143(2):717–725. https://doi.org/10.1007/s12011-010-8915-7
57. Raddatz G, Hagemann S, Aran D, Söhle J, Kulkarni PP, Kaderali L et al. Aging is associated with highly defined epigenetic changes in the human epidermis. Epigenetics Chromatin. 2013;6(1):36. https://doi.org/10.1186/1756-8935-6-36.
58. Falckenhayn C, Bienkowska A, Söhle J, Wegner K, Raddatz G, Kristof B et al. Identification of dihydromyricetin as a natural DNA methylation inhibitor with rejuvenating activity in human skin. Front Aging. 2024;4:1258184. https://doi.org/10.3389/fragi.2023.1258184.
Review
For citations:
Tlish MM, Shavilova ME. Epigenetics of skin aging: from mechanisms to the search for methods of correction. Meditsinskiy sovet = Medical Council. 2025;(14):193-200. (In Russ.) https://doi.org/10.21518/ms2025-338