Liver fibrosis as a major prognostic factor in chronic liver diseases and a key target for pharmacotherapy
https://doi.org/10.21518/ms2025-352
Abstract
Introduction. According to the available data from literature, non-alcoholic fatty liver disease (NAFLD) is the most common liver pathology in Russia and worldwide. The stage of liver fibrosis (LF) determines the prognosis for patients. Liver fibrogenesis is a potentially reversible process and requires timely initiation of therapy.
Aim. To provide current information on the prevalence of LF, the mechanisms of its development and therapeutic options in patients with NAFLD, as well as practical evaluation of the antifibrotic effects of essential phospholipid (EP) combined with glycyrrhizic acid (GA).
Materials and methods. A total of 83 people (mean age 61.4 ± 3.27 years, a male-to-female ratio 65:18, body mass index no more than 40 kg/m2) were included in the study. The stage of liver fibrotic changes was evaluated using dynamic ultrasound transient shear-wave fibroelastography before therapy initiation, at 6 and 12 months of therapy. The patients were divided into 2 groups: group 1 (n = 39) received a fixed-dose combination of EP/GA, group 2 (n = 44) received EP. Liver steatosis was the predominant condition in 59 individuals, while non-alcoholic steatohepatitis was present in 24 patients.
Results. The evaluation of six-month fixed-dose EP/GA therapy showed significant regression of LF indicators in group 1, which was mainly observed in fibrotic changes F2. After 12 months of fixed-dose EP/GA therapy, the number of patients with LF F2 and LF F3 also significantly regressed from 49% to 31% and from 38% to 23%, respectively. The EP monotherapy only demonstrated its efficacy in patients with fibrotic changes F1.
Conclusion. The fibrogenesis processes may be slowed down, and in some cases regressed, during the long-term use of the combination drug EP/GA, which demonstrated its efficacy and safety in clinical trials and in real-life clinical practice.
About the Authors
S. N. MekhtievRussian Federation
Sabir N. Mekhtiev - Dr. Sci. (Med.), Professor of the Department of Hospital Therapy with a Course of Allergology and Immunology named after Academician M.V. Chernorutsky with a Clinic, Pavlov First Saint Petersburg State Medical University; Chief Physician, Gastroenterology Center “Expert”.
6–8, Lev Tolstoy St., St Petersburg, 197022; 16, Pionerskaya St., St Petersburg, 197110
O. A. Mekhtieva
Russian Federation
Olga A. Mekhtieva - Cand. Sci. (Med.), Associate Professor of the Department of Hospital Therapy with a Course of Allergology and Immunology named after Academician M.V. Chernorutsky with a Clinic, Pavlov First Saint Petersburg State Medical University; Gastroenterologist, Therapist, Cardiologist, Gastroenterology Center “Expert”.
6–8, Lev Tolstoy St., St Petersburg, 197022; 16, Pionerskaya St., St Petersburg, 197110
O. M. Berko
Russian Federation
Olesya М. Berko - Gastroenterologist, Endoscopist of the Endoscopic Department, North-West District Scientific and Clinical Center named after L.G. Sokolov of the Federal Medical and Biological Agency of Russia.
4, Kultury Ave., St Petersburg, 194291
A. S. Lovitskiy
Russian Federation
Aleksandr S. Lovitskiy - Student, Faculty of Medicine, Pavlov First Saint Petersburg State Medical University.
6–8, Lev Tolstoy St., St Petersburg, 197022
References
1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbas N et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–1858. https://doi.org/10.1016/S0140-6736(18)32279-7.
2. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516–537. https://doi.org/10.1016/j.jhep.2023.03.017.
3. Teng ML, Ng CH, Huang DQ, Chan KE, Tan DJ, Lim WH et al. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin Mol Hepatol. 2023;29(Suppl.):S32–S42. https://doi.org/10.3350/cmh.2022.0365.
4. Tsukanov VV, Vasyutin AV, Tonkikh YuL, Onuchina EV, Petrunko I.L, Rzhavicheva OS et al. The Burden of Hepatic Pathologies in the Modern World. Some Quality Parameters of Management of Patients with Liver Cirrhosis in the Siberian Federal District. Doktor.Ru. 2019;(3):6–10. (In Russ.) https://doi.org/10.31550/1727-2378-2019-158-3-6-10.
5. Ивашкин ВТ, Драпкина ОМ, Маевская МВ, Райхельсон КЛ, Оковитый СВ, Жаркова МС и др. Неалкогольная жировая болезнь печени: клинические рекомендации. М.; 2024. 151 с. Режим доступа: https://cr.minzdrav.gov.ru/view-cr/748_2.
6. Komova A, Maevskaya M, Ivashkin V. Prevalence of Liver Disease in Russia’s Largest City: A Populationbased Study. Am J Clin Med Res. 2014;2(5):99–102. https://doi.org/10.12691/ajcmr-2-5-2.
7. Cooke GS, Flower B, Cunningham E, Marshall AD, Lazarus JV, Palayew A et al. Progress towards elimination of viral hepatitis: a Lancet Gastroenterology & Hepatology Commission update. Lancet Gastroenterol Hepatol. 2024;9(4):346–365. https://doi.org/10.1016/S2468-1253(23)00321-7.
8. Aydın MM, Akçalı KC. Liver fibrosis. Turk J Gastroenterol. 2018;29(1):14–21. https://doi.org/10.5152/tjg.2018.17330.
9. Roehlen N, Crouchet E, Baumert TF. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells. 2020;9(4):875. https://doi.org/10.3390/cells9040875.
10. Mihm S. Danger-Associated Molecular Patterns (DAMPs): Molecular Triggers for Sterile Inflammation in the Liver. Int J Mol Sci. 2018;19(10):3104. https://doi.org/10.3390/ijms19103104.
11. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–195. https://doi.org/10.1038/nature00858.
12. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 2007;8(5):487–496. https://doi.org/10.1038/ni1457.
13. Li J, Wang FP, She WM, Yang CQ, Li L, Tu CT et al. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J Viral Hepat. 2014;21(2):129–140. https://doi.org/10.1111/jvh.12152.
14. Li J, Zeng C, Zheng B, Liu C, Tang M, Jiang Y et al. HMGB1-induced autophagy facilitates hepatic stellate cells activation: A new pathway in liver fibrosis. Clin Sci. 2018;132(15):1645–1667. https://doi.org/10.1042/CS20180177.
15. Huebener P, Pradere JP, Hernandez C, Gwak GY, Caviglia JM, Mu X et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J Clin Investig. 2015;125(2):539–550. https://doi.org/10.1172/JCI76887.
16. Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD, Gores GJ. Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 2003;125(2):437–443. https://doi.org/10.1016/S0016-5085(03)00907-7.
17. Zhan SS, Jiang JX, Wu J, Halsted C, Friedman SL, Zern MA, Torok NJ. Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo. Hepatology. 2006;43(3):435–443. https://doi.org/10.1002/hep.21093.
18. Watanabe A, Hashmi A, Gomes DA, Town T, Badou A, Flavell RA, Mehal WZ. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology. 2007;46(5):1509–1518. https://doi.org/10.1002/hep.21867.
19. Musso G, Cassader M, Paschetta E, Gambino R. Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology. 2018;155(2):282–302.e8. https://doi.org/10.1053/j.gastro.2018.06.031.
20. Chiappini F, Coilly A, Kadar H, Gual P, Tran A, Desterke C et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep. 2017;7:46658. https://doi.org/10.1038/srep46658.
21. Chaurasia B, Summers SA. Ceramides – Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol Metab. 2015;26(10):538–550. https://doi.org/10.1016/j.tem.2015.07.006.
22. Xiao F, Waldrop SL, Bronk SF, Gores GJ, Davis LS, Kilic G. Lipoapoptosis induced by saturated free fatty acids stimulates monocyte migration: A novel role for Pannexin1 in liver cells. Purinergic Signal. 2015;11(3):347–359. https://doi.org/10.1007/s11302-015-9456-5.
23. Gan LT, Van Rooyen DM, Koina ME, McCuskey RS, Teoh NC, Farrell GC. Hepatocyte free cholesterol lipotoxicity results from JNK1-mediated mitochondrial injury and is HMGB1 and TLR4-dependent. J Hepatol. 2014;61(6):1376–1384. https://doi.org/10.1016/j.jhep.2014.07.024.
24. Ioannou GN, Haigh WG, Thorning D, Savard C. Hepatic cholesterol crystals and crown-like structures distinguish NASH from simple steatosis. J Lipid Res. 2013;54(5):1326–1334. https://doi.org/10.1194/jlr.M034876.
25. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823. https://doi.org/10.1038/ncomms3823.
26. Testerink N, Ajat M, Houweling M, Brouwers JF, Pully VV, van Manen HJ et al. Replacement of Retinyl Esters by Polyunsaturated Triacylglycerol Species in Lipid Droplets of Hepatic Stellate Cells during Activation. PLoS ONE. 2012;7(4):e34945. https://doi.org/10.1371/journal.pone.0034945.
27. Affo S, Yu LX, Schwabe RF. The Role of Cancer-Associated Fibroblasts and Fibrosis in Liver Cancer. Annu Rev Pathol. 2017;12:153–186. https://doi.org/10.1146/annurev-pathol-052016-100322.
28. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(24):9448–9453. https://doi.org/10.1073/pnas.1201840109.
29. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol. 2017;17(5):306–321. https://doi.org/10.1038/nri.2017.11.
30. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 2014;60(5):1090–1096. https://doi.org/10.1016/j.jhep.2013.12.025.
31. Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 2009;50(1):261–274. https://doi.org/10.1002/hep.22950.
32. Marra F, Tacke F. Roles for Chemokines in Liver Disease. Gastroenterology. 2014;147(3):577–594.e1. https://doi.org/10.1053/j.gastro.2014.06.043.
33. Sahin H, Trautwein C, Wasmuth HE. Functional role of chemokines in liver disease models. Nat Rev Gastroenterol Hepatol. 2010;7(12):682–690. https://doi.org/10.1038/nrgastro.2010.168.
34. Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Invest. 2010;90(12):1805–1816. https://doi.org/10.1038/labinvest.2010.123.
35. Garbuzenko DV. Aspects of pathogenetc pharmacotherapy for portal hypertension in liver cirrhosis. Terapevticheskii Arkhiv. 2016;88(2):101–108. (In Russ.) https://doi.org/10.17116/terarkh2016888101-108.
36. Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol. 2020;26(40):6111–6140. https://doi.org/10.3748/wjg.v26.i40.6111.
37. Taylor RS, Taylor RJ, Bayliss S, Hagström H, Nasr P, Schattenberg JM et al. Association Between Fibrosis Stage and Outcomes of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology. 2020;158(6):1611–1625.e12. https://doi.org/10.1053/j.gastro.2020.01.043.
38. Suh SW, Choi YS. Influence of liver fibrosis on prognosis after surgical resection for resectable single hepatocellular carcinoma. ANZ J Surg. 2019;89(3):211–215. https://doi.org/10.1111/ans.14732.
39. Zhang JX, Li P, Chen Z, Lin H, Cai Z, Liao W, Pan Z. Impact of liver fibrosis score on prognosis after common therapies for intrahepatic cholangiocarcinoma: a propensity score matching analysis. BMC Cancer. 2020;20:556. https://doi.org/10.1186/s12885-020-07051-5.
40. Atta HM. Reversibility and heritability of liver fibrosis: Implications for research and therapy. World J Gastroenterol. 2015;21(17):5138–5148. https://doi.org/10.3748/wjg.v21.i17.5138.
41. Friedman SL, Pinzani M. Hepatic fibrosis 2022: Unmet needs and a blue-print for the future. Hepatology. 2022;75(2):473–488. https://doi.org/10.1002/hep.32285.
42. Atta H, El-Rehany M, Hammam O, Abdel-Ghany H, Ramzy M, Roderfeld M et al. Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression. PLoS ONE. 2014;9(11):e112384. https://doi.org/10.1371/journal.pone.0112384.
43. Iimuro Y, Nishio T, Morimoto T, Nitta T, Stefanovic B, Choi SK et al. Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology. 2003;124(2):445–458. https://doi.org/10.1053/gast.2003.50063.
44. Poynard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z et al. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology. 2002;122(5):1303–1313. https://doi.org/10.1053/gast.2002.33023.
45. Dienstag JL, Goldin RD, Heathcote EJ, Hann HW, Woessner M, Stephenson SL et al. Histological outcome during long-term lamivudine therapy. Gastroenterology. 2003;124(1):105–117. https://doi.org/10.1053/gast.2003.50013.
46. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest. 2007;117(3):539–548. https://doi.org/10.1172/JCI30542.
47. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134(4):657–667. https://doi.org/10.1016/j.cell.2008.06.049.
48. Liu X, Xu J, Brenner DA, Kisseleva T. Reversibility of Liver Fibrosis and Inactivation of Fibrogenic Myofibroblasts. Curr Pathobiol Rep. 2013;1(3):209–214. https://doi.org/10.1007/s40139-013-0018-7.
49. Guo M, Wang Z, Dai J, Fan H, Yuan N, Gao L et al. Glycyrrhizic acid alleviates liver fibrosis in vitro and in vivo via activating CUGBP1-mediated IFN-γ/ STAT1/Smad7 pathway. Phytomedicine. 2023;112:154587. https://doi.org/10.1016/j.phymed.2022.154587.
50. Chen LP, Wu XQ, Zhang ZL, Wang L, Zhang F, Zheng SZ, Kong DS. Evaluate the effect of licorice on anti-liver fibrosis: a systematic review and meta-analysis. Food Sci Technol. 2022;42:e103321. https://doi.org/10.1590/fst.103321.
51. Ivashkin VT, Bakulin IG, Bogomolov PO, Matsiyevich MV, Geyvandova NI, Koroy PV et al. Efficacy and safety of glycyrrhizic acid combined to essential phospholipids (Phosphogliv) at non-alcoholic fatty liver disease: results of multicenter double blind randomized placebo-controlled post-registration clinical study (IV phase) «Gepard» (PHG-M2/P02-12). Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2017;27(2):34–43. (In Russ.) https://doi.org/10.22416/1382-4376-2017-27-2-34-43.
52. Okovity SV, Nikitin IG. Analysis of the Dafety of the Use of Glycyrrhizic Acid in Humans. Effective Pharmacotherapy. 2023;19(8):92–103. (In Russ.) Available at: https://pharm-spb.ru/docs/pub/2023_Безопасность%20применения%20глицирризиновой%20кислоты%20у%20человека.pdf
Review
For citations:
Mekhtiev SN, Mekhtieva OA, Berko OM, Lovitskiy AS. Liver fibrosis as a major prognostic factor in chronic liver diseases and a key target for pharmacotherapy. Meditsinskiy sovet = Medical Council. 2025;(15):126-135. (In Russ.) https://doi.org/10.21518/ms2025-352


































