Prediabetes is a window of opportunity for preventive interventions. Part 1
https://doi.org/10.21518/ms2025-407
Abstract
Prediabetes (PD) is a prominent example of conditions known as pre-existing disease in modern clinical medicine. The prevalence of carbohydrate metabolism disorders increases every year. Pathophysiological changes in prediabetes are numerous and are represented, among other things, at the genetic level, the so-called “metabolic memory”. Already at the prediabetes stage, changes in various organs and systems characteristic of hyperglycemia begin to form. The purpose of the review is to present modern data on the epidemiology, pathobiology of prediabetes, and its complications. The article presents statistical and prognostic data on the prevalence of prediabetes, provides epidemiological data for Russia and the world, and discusses modern ideas about the transformation of early carbohydrate metabolism disorders into diabetes. A large section is devoted to the description of the pathophysiology of complications of long-term hyperglycemia from the cardiovascular system, liver, reproductive system, kidneys, and oncogenesis. The pathophysiological and clinical features of early carbohydrate metabolism disorders – impaired fasting glycemia and impaired glucose tolerance – are presented. The article discusses the mechanisms of metabolic memory development and its role in the development of early complications of prediabetes. The data of the latest studies studying the pathogenesis of organ damage in prediabetes are analyzed – the mechanisms of fatty liver disease development, risk factors for oncogenesis, reproductive disorders, the mechanisms of cellular aging in prediabetes, microvascular and macrovascular complications with the development of cardiovascular diseases, the pathobiology of nephropathy are considered. The analysis of modern epidemiological and prognostic data, the results of fundamental and clinical studies confirms the relevance of the problem of early diagnosis of prediabetes and substantiates the need for active therapeutic tactics.
About the Authors
T. V. AdashevaРоссия
Tatiana V. Adasheva, Dr. Sci. (Med.), Professor of the Department of Therapy and Preventive Medicine
4, Dolgorukovskaya St., Moscow, 127006, Russia
E. E. Gubernatorova
Россия
Ekaterina E. Gubernatorova, Cand. Sci. (Med.), Assistant of the Department of Therapy and Preventive Medicine
4, Dolgorukovskaya St., Moscow, 127006, Russia
E. I. Fomina
Россия
Elizaveta I. Fomina, Therapist
16, Bldg. 1, Abramtsevskaya St., Moscow, 127572, Russia
E. G. Lobanova
Россия
Elena G. Lobanova, Dr. Sci. (Med.), Professor of the Department of Pharmocology
20, Bldg. 1, Delegatskaya St., Moscow, 127473, Russia
References
1. Драпкина ОМ, Мокрышева НГ, Шестакова МВ, Лавренова ЕА и др. Диспансерное наблюдение пациентов с предиабетом врачом-терапевтом в первичном звене здравоохранения. 2-е изд. М.: РОПНИЗ; 2024. 36 с. https://doi.org/10.15829/ROPNIZ-d100-2024. EDN UWWCJR.
2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.
3. Dedov II, Shestakova MV, Galstyan GR. The prevalence of type 2 diabetes mellitus in the adult population of Russia (NATION study). Diabetes Mellitus. 2016;19(2):104–112. (In Russ.) https://doi.org/10.14341/DM2004116-17.
4. Balanova YuA, Shalnova SA, Imaeva AE, Kutsenko VA, Kapustina AV, Evstifeeva SE et al. Prediabetes: prevalence, associations with cardiovascular risk factors and contribution to survival in the Russian population. Cardiovascular Therapy and Prevention. 2024;23(5):4022. (In Russ.) https://doi.org/10.15829/1728-8800-2024-4022.
5. Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol. 2021;69(11):2932–2938. https://doi.org/10.4103/ijo.IJO_1627_21.
6. Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA. 2017;317(24):2515–2523. https://doi.org/10.1001/jama.2017.7596.
7. Wang L, Peng W, Zhao Z, Zhang M, Shi Z, Song Z et al. Prevalence and Treatment of Diabetes in China, 2013–2018. JAMA. 2021;326(24):2498–2506. https://doi.org/10.1001/jama.2021.22208.
8. Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ. 2020;369:m997. https://doi.org/10.1136/bmj.m997.
9. Meigs JB, Muller DC, Nathan DM, Blake DR, Andres R. The natural history of progression from normal glucose tolerance to type 2 diabetes in the Baltimore Longitudinal Study of Aging. Diabetes. 2003;52(6):1475–1484. https://doi.org/10.2337/diabetes.52.6.1475.
10. Weyer C, Tataranni PA, Bogardus C, Pratley RE. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care. 2001;24(1):89–94. https://doi.org/10.2337/diacare.24.1.89.
11. Dagogo-Jack S, Edeoga C, Ebenibo S, Nyenwe E, Wan J. Lack of racial disparity in incident prediabetes and glycemic progression among black and white offspring of parents with type 2 diabetes: the pathobiology of prediabetes in a biracial cohort (POP-ABC) study. J Clin Endocrinol Metab. 2014;99(6):E1078–E1087. https://doi.org/10.1210/jc.2014-1077.
12. Barbarash OL, Voyevoda MI, Galstyan GR, Shestakova MV, Boytsov SA, Aleksandrova OYu et al. Pre-diabetes as an interdisciplinary problem: definition, risks, approaches to the diagnostics and prevention of type 2 diabetes and cardiovascular complications. Russian Journal of Cardiology. 2019;(4):83–91. (In Russ.) https://doi.org/10.15829/1560-4071-2019-4-83-91.
13. Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999;104(6):787–794. https://doi.org/10.1172/JCI7231.
14. Owei I, Umekwe N, Provo C, Wan J, Dagogo-Jack S. Insulin-sensitive and insulin-resistant obese and non-obese phenotypes: role in prediction of incident pre-diabetes in a longitudinal biracial cohort. BMJ Open Diabetes Res Care. 2017;5(1):e000415. https://doi.org/10.1136/bmjdrc-2017-000415.
15. Al Hommos NA, Ebenibo S, Edeoga C, Dagogo-Jack S. Trajectories of Body Weight and Fat Mass in Relation to Incident Prediabetes in a Biracial Cohort of Free-Living Adults. J Endocr Soc. 2020;5(2):bvaa164. https://doi.org/10.1210/jendso/bvaa164.
16. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–110. https://doi.org/10.2337/diabetes.52.1.102.
17. Ma J, Wang Y, Mo M, Lian Z. Association b.etween low birth weight and impaired glucose tolerance in children: a systematic review and metaanalysis. Front Pediatr. 2024;12:1362076. https://doi.org/10.3389/fped.2024.1362076.
18. Perreault L, Færch K. Approaching pre-diabetes. J Diabetes Complications. 2014;28(2):226–233. https://doi.org/10.1016/j.jdiacomp.2013.10.008.
19. Tripathy D, Carlsson M, Almgren P, Isomaa B, Taskinen MR, Tuomi T, Groop LC. Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes. 2000;49(6):975–980. https://doi.org/10.2337/diabetes.49.6.975.
20. Hanefeld M, Koehler C, Henkel E, Fuecker K, Schaper F, TemelkovaKurktschiev T. Post-challenge hyperglycaemia relates more strongly than fasting hyperglycaemia with carotid intima-media thickness: the RIAD Study. Risk Factors in Impaired Glucose Tolerance for Atherosclerosis and Diabetes. Diabet Med. 2000;17(12):835–840. https://doi.org/10.1046/j.1464-5491.2000.00408.x.
21. Williams JW, Zimmet PZ, Shaw JE, de Courten MP, Cameron AJ, Chitson P et al Gender differences in the prevalence of impaired fasting glycaemia and impaired glucose tolerance in Mauritius. Does sex matter? Diabet Med. 2003;20(11):915–920. https://doi.org/10.1046/j.1464-5491.2003.01059.x.
22. Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study. Diabetes. 2006;55(5):1430–1435. https://doi.org/10.2337/db05-1200.
23. Jani R, Molina M, Matsuda M, Balas B, Chavez A, DeFronzo RA, AbdulGhani M. Decreased non-insulin-dependent glucose clearance contributes to the rise in fasting plasma glucose in the nondiabetic range. Diabetes Care. 2008;31(2):311–315. https://doi.org/10.2337/dc07-1593.
24. Kanat M, Mari A, Norton L, Winnier D, DeFronzo RA, Jenkinson C,AbdulGhani MA. Distinct β-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes. 2012;61(2):447–453. https://doi.org/10.2337/db11-0995.
25. Kantartzis K, Machann J, Schick F, Fritsche A, Häring HU, Stefan N. The impact of liver fat vs visceral fat in determining categories of prediabetes. Diabetologia. 2010;53(5):882–889. https://doi.org/10.1007/s00125-010-1663-6.
26. Bock G, Dalla Man C, Campioni M, Chittilapilly E, Basu R, Toffolo G et al. Pathogenesis of pre-diabetes: mechanisms of fasting and postprandial hyperglycemia in people with impaired fasting glucose and/or impaired glucose tolerance. Diabetes. 2006;55(12):3536–3549. https://doi.org/10.2337/db06-0319.
27. Faerch K, Vaag A, Holst JJ, Glümer C, Pedersen O, Borch-Johnsen K. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia. 2008;51(5):853–861. https://doi.org/10.1007/s00125-008-0951-x.
28. Meyer C, Pimenta W, Woerle HJ, Van Haeften T, Szoke E, Mitrakou A, Gerich J. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care. 2006;29(8):1909–1914. https://doi.org/10.2337/dc06-0438.
29. Festa A, D’Agostino R Jr, Hanley AJ, Karter AJ, Saad MF, Haffner SM. Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes. 2004;53(6):1549–1555. https://doi.org/10.2337/diabetes.53.6.1549.
30. Biryukova EV, Shinkin MV, Starshinova AA. Prediabetes is an urgent medical and social problem of our time. Effective Pharmacotherapy. 2023;19(12):42–50. (In Russ.) https://doi.org/10.33978/2307-3586-2023-19-12-42-50.
31. Dedov II, Shestakova MV. The metabolic memory phenomenon in predicting a risk for vascular complications in diabetes mellitus. Terapevticheskii Arkhiv. 2015;87(10):4–10. (In Russ.) https://doi.org/10.17116/terarkh201587104-10.
32. Дедов ИИ, Петеркова ВА. Руководство по детской эндокринологии. М.: Универсум Паблишинг; 2006. 595 c.
33. Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: The “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab. 2009;94(2):410–415. https://doi.org/10.1210/jc.2008-1824.
34. Aitbaev K, Mamutova S, Murkamilov I, Fomin V, Kudaibergenova I, Murkamilova ZH, Yusupov F. Type 2 diabetes mellitus: The role of epigenetic modifications in pathophysiology and prospects for the use of epigenetic therapy. Bulletin of Science and Practice. 2021;7(5):184–203. (In Russ.) Available at: https://bulletennauki.ru/gallery/66_17.pdf.
35. Ramlo-Halsted BA, Edelman SV. The natural history of type 2 diabetes. Implications for clinical practice. Prim Care. 1999;26(4):771–789. https://doi.org/10.1016/s0095-4543(05)70130-5.
36. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20(4):537–544. https://doi.org/10.2337/diacare.20.4.537.
37. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, IlanneParikka P et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344(18):1343–1350. https://doi.org/10.1056/NEJM200105033441801.
38. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://doi.org/10.1056/NEJMoa012512.
39. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289–297. https://doi.org/10.1007/s00125-005-0097-z.
40. de Vegt F, Dekker JM, Jager A, Hienkens E, Kostense PJ, Stehouwer CD et al. Relation of impaired fasting and postload glucose with incident type 2 diabetes in a Dutch population: The Hoorn Study. JAMA. 2001;285(16):2109–2113. https://doi.org/10.1001/jama.285.16.2109.
41. Zimmet P. The burden of type 2 diabetes: are we doing enough? Diabetes Metab. 2003;29(4 Pt 2):6S9–6S18. https://doi.org/10.1016/s1262-3636(03)72783-9.
42. Gong Q, Zhang P, Wang J, Ma J, An Y, Chen Y et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019;7(6):452–461. https://doi.org/10.1016/S2213-8587(19)30093-2.
43. Richter B, Hemmingsen B, Metzendorf MI, Takwoingi Y. Development of type 2 diabetes mellitus in people with intermediate hyperglycaemia. Cochrane Database Syst Rev. 2018;10(10):CD012661. https://doi.org/10.1002/14651858.CD012661.pub2.
44. Heianza Y, Arase Y, Fujihara K, Tsuji H, Saito K, Hsieh SD et al. Screening for pre-diabetes to predict future diabetes using various cut-off points for HbA(1c) and impaired fasting glucose: the Toranomon Hospital Health Management Center Study 4 (TOPICS 4). Diabet Med. 2012;29(9):e279–e285. https://doi.org/10.1111/j.1464-5491.2012.03686.x.
45. Rajput R, Ahlawat P. Prevalence and predictors of non-alcoholic fatty liver disease in prediabetes. Diabetes Metab Syndr. 2019;13(5):2957–2960. https://doi.org/10.1016/j.dsx.2019.07.060.
46. Bakulin IG, Sandler YG, Vinnitskayа EV, Keiyan VA, Rodionova SV, Rotin DL. Diabetes mellitus and nonalcoholic fatty liver disease: The verges of contingency. Terapevticheskii Arkhiv. 2017;89(2):59–65. (In Russ.) https://doi.org/10.17116/terarkh201789259-65.
47. Richard J, Lingvay I. Hepatic steatosis and Type 2 diabetes: current and future treatment considerations. Expert Rev Cardiovasc Ther. 2011;9(3):321–328. https://doi.org/10.1586/erc.11.15.
48. Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of Insulin Resistance in MAFLD. Int J Mol Sci. 2021;22(8):4156. https://doi.org/10.3390/ijms22084156.
49. Huang Y, Cai X, Qiu M, Chen P, Tang H, Hu Y, Huang Y. Prediabetes and the risk of cancer: a meta-analysis. Diabetologia. 2014;57(11):2261–2269. https://doi.org/10.1007/s00125-014-3361-2.
50. Ramteke P, Deb A, Shepal V, Bhat MK. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality. Cancers. 2019;11(9):1402. https://doi.org/10.3390/cancers11091402.
51. Dankner R, Boffetta P, Balicer RD, Boker LK, Sadeh M, Berlin A et al. TimeDependent Risk of Cancer After a Diabetes Diagnosis in a Cohort of 2.3 Million Adults. Am J Epidemiol. 2016;183(12):1098–1106. https://doi.org/10.1093/aje/kwv290.
52. Colloca A, Donisi I, Anastasio C, Balestrieri ML, D’Onofrio N. Metabolic Alteration Bridging the Prediabetic State and Colorectal Cancer. Cells. 2024;13(8):663. https://doi.org/10.3390/cells13080663.
53. Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci. 2023;13(1):25. https://doi.org/10.1186/s13578-023-00977-w.
54. Kalyani RR, Dobs AS. Androgen deficiency, diabetes, and the metabolic syndrome in men. Curr Opin Endocrinol Diabetes Obes. 2007;14(3):226–234. https://doi.org/10.1097/MED.0b013e32814db856.
55. Gorbachinsky I, Akpinar H, Assimos DG. Metabolic syndrome and urologic diseases. Rev Urol. 2010;12(4):e157–e180. Available at: https://pubmed.ncbi.nlm.nih.gov/21234260/.
56. Tyuzikov IA. Metabolic syndrome and male infertility (review). Andrology and Genital Surgery. 2013;14(2):5–10. (In Russ.) Available at: https://www.elibrary.ru/rrwnfz.
57. Nguyen RH, Wilcox AJ, Skjaerven R, Baird DD. Men’s body mass index and infertility. Hum Reprod. 2007;22(9):2488–2493. https://doi.org/10.1093/humrep/dem139.
58. Tyuzikov IA, Kalinchenko SYu, Vorslov LO, Tishova YuA. Male infertility and insulin resistance: are there any pathogenic links, and who, when and how must diagnose and treat them? Experimental and Clinical Urology. 2014;(2):68–76. (In Russ.) Available at: https://www.elibrary.ru/sjwgcr.
59. Andreeva EN, Karpova EA, Derkach DA, Vesnina AF, Ponomareva TA, Shmeleva OO. Influence of insulin on function of ovaries. Reproduction problems. 2005;(4):27–34. (In Russ.) Available at: http://elib.fesmu.ru/Article.aspx?id=133606.
60. Manukhin IB, Gevorkyan MA, Chagay NB. Androgens and insulin resistance (review of literature). Russian Journal of Human Reproduction. 2005;11(2):27–31. (In Russ.) Available at: https://elibrary.ru/hskcar.
61. Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M et al. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int J Mol Sci. 2022;23(2):583. https://doi.org/10.3390/ijms23020583.
62. Ovsyannikova TV, Demidova IYu, Glazkova OI. Gonadotrophic function of insulin. Giperandrogeniya and giperinsulinemiya (review of literature). Russian Journal of Human Reproduction. 1998;(6):5–8. (In Russ.) Available at: https://rusmedserv.com/problreprod/1998g/6/article_640.html.
63. Mkrtumyan AM, Chagay NB. The relationship between ovarian hormones, fat mass and insulin resistance. Russian Journal of Human Reproduction. 2005;(5): 55–59. (In Russ.) Available at: http://elib.fesmu.ru/Article.aspx?id=137961.
64. Daubenmier J, Lin J, Blackburn E, Hecht FM, Kristeller J, Maninger N et al. Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study. Psychoneuroendocrinology. 2012;37(7):917–928. https://doi.org/10.1016/j.psyneuen.2011.10.008.
65. Dudinskaya EN, Brailova NV, Strazhesko ID, Akasheva DU, Tkacheva ON, Shestakova MV. Role of insulin resistance in vascular aging processes (a review of literature). Profilakticheskaya Meditsina. 2014;17(2):35–41. (In Russ.) Available at: https://www.mediasphera.ru/issues/profilakticheskaya-meditsina/2014/2/031726-6130201426.
66. Valdes AM, Andrew T, Gardner JP, Kimura M, Oelsner E, Cherkas LF et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–664. https://doi.org/10.1016/S0140-6736(05)66630-5.
67. Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol. 2010;55(13):1310–1317. https://doi.org/10.1016/j.jacc.2009.10.060.
68. Ziegler D, Rathmann W, Dickhaus T, Meisinger C, Mielck A. Prevalence of polyneuropathy in pre-diabetes and diabetes is associated with abdominal obesity and macroangiopathy: the MONICA/KORA Augsburg Surveys S2 and S3. Diabetes Care. 2008;31(3):464–469. https://doi.org/10.2337/dc07-1796.
69. Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N et al. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: the Task Force on diabetes, prediabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur Heart J. 2013;34(39):3035–3087. https://doi.org/10.1093/eurheartj/eht108.
70. Makino N, Sasaki M, Maeda T, Mimori K. Telomere biology in cardiovascular disease – role of insulin sensitivity in diabetic hearts. Exp Clin Cardiol. 2010;15(4): e128–e133.Available at: https://pubmed.ncbi.nlm.nih.gov/21264070/.
71. Demidova TYu, Plakhotnyaya VM. Prediabetes: a risk factor for cardiovascular diseases and a window of opportunity for their prevention. FOCUS. Endocrinology. 2023;4(2):6–11. (In Russ.) https://doi.org/10.15829/1560-4071-2023-24.
72. Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch. 2022;474(1):33–61. https://doi.org/10.1007/s00424-021-02650-y.
73. Ali MK, Bullard KM, Saydah S, Imperatore G, Gregg EW. Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol. 2018;6(5):392–403. https://doi.org/10.1016/S2213-8587(18)30027-5.
74. Cai X, Zhang Y, Li M, Wu JH, Mai L, Li J et al. Association between prediabetes and risk of all cause mortality and cardiovascular disease: updated meta-analysis. BMJ. 2020;370:m2297. https://doi.org/10.1136/bmj.m2297.
75. Glucose tolerance and mortality: comparison of WHO and American Diabetes Association diagnostic criteria. The DECODE study group. European Diabetes Epidemiology Group. Diabetes Epidemiology: Collaborative analysis Of Diagnostic criteria in Europe. Lancet. 1999;354(9179):617–621. Available at: https://pubmed.ncbi.nlm.nih.gov/10466661/.
76. Sorkin JD, Muller DC, Fleg JL,Andres R. The relation of fasting and 2-h postchallenge plasma glucose concentrations to mortality: data from the Baltimore Longitudinal Study of Aging with a critical review of the literature. Diabetes Care. 2005;28(11):2626–2632. https://doi.org/10.2337/diacare.28.11.2626.
77. Nakagami T; DECODA Study Group. Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia. 2004;47(3):385–394. https://doi.org/10.1007/s00125-004-1334-6.
78. Saydah SH, Loria CM, Eberhardt MS, Brancati FL. Subclinical states of glucose intolerance and risk of death in the U.S. Diabetes Care. 2001;24(3):447–453. https://doi.org/10.2337/diacare.24.3.447.
79. Barr ELM, Boyko EJ, Zimmet PZ, Wolfe R, Tonkin AM, Shaw JE. Continuous relationships between non-diabetic hyperglycaemia and both cardiovascular disease and all-cause mortality: the Australian Diabetes, Obesity, and Lifestyle (AusDiab) study. Diabetologia. 2009;52(3):415–424. https://doi.org/10.1007/s00125-008-1246-y.
80. Wen CP, Cheng TY, Tsai SP, Hsu HL, Wang SL. Increased mortality risks of pre-diabetes (impaired fasting glucose) in Taiwan. Diabetes Care. 2005;28(11):2756–2761. https://doi.org/10.2337/diacare.28.11.2756.
81. Warren B, Pankow JS, Matsushita K, Punjabi NM, Daya NR, Grams M et al. Comparative prognostic performance of definitions of prediabetes: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2017;5(1):34–42. https://doi.org/10.1016/S2213-8587(16)30321-7.
82. Schneider AL, Kalyani RR, Golden S, Stearns SC, Wruck L, Yeh HC et al. Diabetes and Prediabetes and Risk of Hospitalization: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 2016;39(5):772–779. https://doi.org/10.2337/dc15-1335.
83. Diabetes Prevention Program Research Group. The prevalence of retinopathy in impaired glucose tolerance and recent-onset diabetes in the Diabetes Prevention Program. Diabet Med. 2007;24(2):137–144. https://doi.org/10.1111/j.1464-5491.2007.02043.x.
84. Katon JG, Reiber GE, Nelson KM. Peripheral neuropathy defined by monofilament insensitivity and diabetes status: NHANES 1999-2004. Diabetes Care. 2013;36(6):1604–1606. https://doi.org/10.2337/dc12-1102.
85. Plantinga LC, Crews DC, Coresh J, Miller ER 3rd, Saran R, Yee J et al. Prevalence of chronic kidney disease in US adults with undiagnosed diabetes or prediabetes. Clin J Am Soc Nephrol. 2010;5(4):673–682. https://doi.org/10.2215/CJN.07891109.
86. van Bussel FC, Backes WH, van Veenendaal TM, Hofman PA, van Boxtel MP, Schram MT et al. Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study. Diabetes. 2016;65(8):2404–2413. https://doi.org/10.2337/db16-0128.
87. van Agtmaal MJM, Houben AJHM, de Wit V, Henry RMA, Schaper NC, Dagnelie PC et al. Prediabetes Is Associated With Structural Brain Abnormalities: The Maastricht Study. Diabetes Care. 2018;41(12):2535–2543. https://doi.org/10.2337/dc18-1132.
88. Erekat NS. Programmed Cell Death in Diabetic Nephropathy: A Review of Apoptosis, Autophagy, and Necroptosis. Med Sci Monit. 2022;28:e937766. https://doi.org/10.12659/MSM.937766.
Review
For citations:
Adasheva TV, Gubernatorova EE, Fomina EI, Lobanova EG. Prediabetes is a window of opportunity for preventive interventions. Part 1. Meditsinskiy sovet = Medical Council. 2025;(16):128–141. (In Russ.) https://doi.org/10.21518/ms2025-407
JATS XML


































