Pathophysiology of vascular cognitive disorders associated with myocardial infarction
https://doi.org/10.21518/ms2025-419
Abstract
According to the World Health Organization, there is an anticipated increase in the number of patients suffering from dementia by 2030. Unfortunately, the initial symptoms noticeable to patients and their surroundings tend to appear relatively late after the onset of the disease, which is a poor prognostic factor. There are numerous etiological factors contributing to the development of cognitive impairments. Vascular dementia accounts for the second most common type of dementia among disease cases and will be discussed in this article. It is important to note that lipid metabolism disorders affect approximately 58.4% of the Russian population, representing one of the main risk factors for myocardial infarction, which is directly associated with the development of vascular cognitive disorders (VCD). According to the studies referenced in this review, it was found that patients who have experienced a myocardial infarction show an increased risk of developing cognitive disorders related to pathological changes such as neuroinflammation and reduced density of dendritic cells. Additionally, it was determined that apoptosis and alterations in “Alzheimer’s-associated” proteins across different brain regions during myocardial conditions contribute to the development of vascular cognitive impairment. The pathophysiological link between myocardial infarction and VCD is mediated by vascular dysregulation, impaired cerebral perfusion, and factors such as oxidative stress, inflammation, neurovascular dysfunction, atherosclerosis, and reperfusion injury, leading to microinfarctions, hypoperfusion, and cognitive impairment. An increased risk of developing VCD is observed in patients following coronary revascularization, necessitating special attention to their cognitive status in the post-primary period.
Keywords
About the Authors
A. A. EvsyukovРоссия
Aleksandr A. Evsyukov, Cand. Sci. (Med.), Associate Professor of the Department of Outpatient Therapy and Family Medicine with a Course in Postgraduate Education
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
M. M. Petrova
Россия
Marina M. Petrova, Dr. Sci. (Med.), Professor, Head of the Department of Outpatient Therapy and Family Medicine with a Course in Postgraduate Education
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
N. A. Shnayder
Россия
Natalia A. Shnayder, Dr. Sci. (Med.), Professor, Chief Researcher of the Center for Collective Use “Molecular and Cellular Technologies”; Chief Researcher of the Institute of Personalized Psychiatry and Neurology
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
3, Bekhterev St., St Petersburg, 192019, Russia
N. Yu. Shimokhina
Россия
Natalya Yu. Shimokhina, Dr. Sci. (Med.), Professor of the Department of Outpatient Therapy and Family Medicine with a Course in Postgraduate Education
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
D. S. Kaskaeva
Россия
Darya S. Kaskaeva, Cand. Sci. (Med.), Associate Professor of the Department of Outpatient Therapy and Family Medicine with a Course in Postgraduate Education
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
A. R. Leyman
Россия
Alena R. Leyman, Postgraduate Student of the Department of Outpatient Therapy and Family Medicine with a Course in Postgraduate Education
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
S. N. Azimova
Россия
Sevinch N. Azimova, Student of the Faculty of Medicine
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
A. M. Bekuzarova
Россия
Amaga M. Bekuzarova, Student of the Faculty of Medicine
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
S. S. Stepanenko
Россия
Sofya S. Stepanenko, Student of the Faculty of Medicine
1, Partizan Zheleznyak St., Krasnoyarsk, 660022, Russia
References
1. Jinawong K, Apaijai N, Chattipakorn N, Chattipakorn SC. Cognitive impairment in myocardial infarction and heart failure. Acta Physiol. 2021;232(1):e13642. https://doi.org/10.1111/apha.13642.
2. Thong EHE, Quek EJW, Loo JH, Yun CY, Teo YN, Teo YH et al. Acute Myocardial Infarction and Risk of Cognitive Impairment and Dementia: A Review. Biology. 2023;12(8):1154. https://doi.org/10.3390/biology12081154.
3. Maneechote C, Palee S, Kerdphoo S, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Balancing mitochondrial dynamics via increasing mitochondrial fusion attenuates infarct size and left ventricular dysfunction in rats with cardiac ischemia/reperfusion injury. Clin Sci. 2019;133(3):497–513. https://doi.org/10.1042/CS20190014.
4. Song N, Ma J, Meng XW, Liu H, Wang H, Song SY et al. Heat Shock Protein 70 Protects the Heart from Ischemia/Reperfusion Injury through Inhibition of p38 MAPK Signaling. Oxid Med Cell Longev. 2020;2020:3908641. https://doi.org/10.1155/2020/3908641.
5. Malick M, Gilbert K, Brouillette J, Godbout R, Rousseau G. Cognitive Deficits Following a Post-Myocardial Infarct in the Rat Are Blocked by the Serotonin-Norepinephrine Reuptake Inhibitor Desvenlafaxine. Int J Mol Sci. 2018;19(12):3748. https://doi.org/10.3390/ijms19123748.
6. Gallagher R, Woolaston A, Tofler G, Bauman A, Zhao E, Jeon YH et al. Cognitive impairment and psychological state in acute coronary syndrome patients: A prospective descriptive study at cardiac rehabilitation entry, completion and follow-up. Eur J Cardiovasc Nurs. 2021;20(1):56–63. https://doi.org/10.1177/1474515120933105.
7. Petrov AV, Shnayder NA, Petrova MM, Evsyukov AA, Kaskaeva DS, Dmitrenko DV, Malinovskaya NA. Animal Models of Vascular Cognitive Disorder after Myocardial Infarction. Personalized Psychiatry and Neurology. 2024;4(3):24–36. https://doi.org/10.52667/2712-9179-2024-4-3-24-36.
8. Chandrashekhar Y, Narula J. Imaging Dynamic Heart-Brain Interactions: Getting to the Heart of the Matter, Gray and White. J Am Coll Cardiol. 2018;71(3):276–278. https://doi.org/10.1016/j.jacc.2017.11.034.
9. Sundbøll J, Horváth-Puhó E, Adelborg K, Schmidt M, Pedersen L, Bøtker HE et al. Higher Risk of Vascular Dementia in Myocardial Infarction Survivors. Circulation. 2018;137(6):567–577. https://doi.org/10.1161/CIRCULATIONAHA.117.029127.
10. Stegmann T, Chu ML, Witte VA, Villringer A, Kumral D, Riedel-Heller SG et al. Heart failure is independently associated with white matter lesions: insights from the population-based LIFE-Adult Study. ESC Heart Fail. 2021;8(1):697–704. https://doi.org/10.1002/ehf2.13166.
11. Ovsenik A, Podbregar M, Fabjan A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behav. 2021;11(6):e02176. https://doi.org/10.1002/brb3.2176.
12. Rajeev V, Fann DY, Dinh QN, Kim HA, De Silva TM, Lai MKP et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics. 2022;12(4):1639–1658. https://doi.org/10.7150/thno.68304.
13. Geng J, Wang L, Zhang L, Qin C, Song Y, Ma Y et al. Blood-Brain Barrier Disruption Induced Cognitive Impairment Is Associated With Increase of Inflammatory Cytokine. Front Aging Neurosci. 2018;10:129. https://doi.org/10.3389/fnagi.2018.00129.
14. Baumann J, Tsao CC, Patkar S, Huang SF, Francia S, Magnussen SN et al. Pericyte, but not astrocyte, hypoxia inducible factor-1 (HIF-1) drives hypoxia-induced vascular permeability in vivo. Fluids Barriers CNS. 2022;19(1):6. https://doi.org/10.1186/s12987-021-00302-y.
15. Michinaga S, Koyama Y. Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int. J. Mol. Sci. 2019;20(3):571. https://doi.org/10.3390/ijms20030571.
16. Chen S, Li Q, Shi H, Li F, Duan Y, Guo Q. New insights into the role of mitochondrial dynamics in oxidative stress-induced diseases. Biomed Pharmacother. 2024;178:117084. https://doi.org/10.1016/j.biopha.2024.117084.
17. Sharma C, Kim SR. Linking Oxidative Stress and Proteinopathy in Alzheimer’s Disease. Antioxidants. 2021;10(8):1231. https://doi.org/10.3390/antiox10081231.
18. Bannai T, Mano T, Chen X, Ohtomo G, Ohtomo R, Tsuchida T et al. Chronic cerebral hypoperfusion shifts the equilibrium of amyloid β oligomers to aggregation-prone species with higher molecular weight. Sci Rep. 2019;9(1):2827. https://doi.org/10.1038/s41598-019-39494-7.
19. Cockerill I, Oliver JA, Xu H, Fu BM, Zhu D. Blood-Brain Barrier Integrity and Clearance of Amyloid-β from the BBB. Adv Exp Med Biol. 2018;1097:261–278. https://doi.org/10.1007/978-3-319-96445-4_14.
20. Althammer F, Ferreira-Neto HC, Rubaharan M, Roy RK, Patel AA, Murphy A et al. Three-dimensional morphometric analysis reveals time-dependent structural changes in microglia and astrocytes in the central amygdala and hypothalamic paraventricular nucleus of heart failure rats. J Neuroinflammation. 2020;17(1):221. https://doi.org/10.1186/s12974-020-01892-4.
21. Angelova PR, Abramov AY. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 2018;592(5):692–702. https://doi.org/10.1002/1873-3468.12964.
22. Saiyasit N, Chunchai T, Prus D, Suparan K, Pittayapong P, Apaijai N et al. Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition. 2020;69:110576. https://doi.org/10.1016/j.nut.2019.110576.
23. Werry EL, Bright FM, Piguet O, Ittner LM, Halliday GM, Hodges JR et al. Recent Developments in TSPO PET Imaging as A Biomarker of Neuroinflammation in Neurodegenerative Disorders. Int J Mol Sci. 2019;20(13):3161. https://doi.org/10.3390/ijms20133161.
24. Leech T, Apaijai N, Palee S, Higgins LA, Maneechote C, Chattipakorn N, Chattipakorn SC. Acute administration of metformin prior to cardiac ischemia/reperfusion injury protects brain injury. Eur J Pharmacol. 2020;885:173418. https://doi.org/10.1016/j.ejphar.2020.173418.
25. Benjanuwattra J, Apaijai N, Chunchai T, Kerdphoo S, Jaiwongkam T, Arunsak B et al. Metformin preferentially provides neuroprotection following cardiac ischemia/reperfusion in non-diabetic rats. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165893. https://doi.org//10.1016/j.bbadis.2020.165893.
26. Durrant CS, Ruscher K, Sheppard O, Coleman MP, Özen I. Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis. 2020;11(2):98. https://doi.org/10.1038/s41419-020-2288-4.
27. Tsoi KKF, Chan JYC, Hirai HW, Wong A, Mok VCT, Lam LCW et al. Recall Tests Are Effective to Detect Mild Cognitive Impairment: A Systematic Review and Meta-analysis of 108 Diagnostic Studies. J Am Med Dir Assoc. 2022;7(3):e202–e203. https://doi.org/10.1016/S2468-2667(22)00027-5.
28. Apaijai N, Moisescu DM, Palee S, McSweeney CM, Saiyasit N, Maneechote C et al. Pretreatment With PCSK9 Inhibitor Protects the Brain Against Cardiac Ischemia/Reperfusion Injury Through a Reduction of Neuronal Inflammation and Amyloid Beta Aggregation. J Am Heart Assoc. 2019;8(2):e010838. https://doi.org/10.1161/JAHA.118.010838.
29. Jinawong K, Apaijai N, Piamsiri C, Maneechote C, Arunsak B, Chunchai T et al. Mild Cognitive impairment Occurs in Rats During the Early Remodeling Phase of Myocardial Infarction. Neuroscience. 2022;493:31–40. https://doi.org/10.1016/j.neuroscience.2022.04.018.
30. Bugger H, Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim Biophys Acta Mol Basis Dis. 2020;1866(7):165768. https://doi.org/10.1016/j.bbadis.2020.165768.
31. Thackeray JT, Hupe HC, Wang Y, Bankstahl J.P, Berding G, Ross TL et al. Myocardial Inflammation Predicts Remodeling and Neuroinflammation After Myocardial Infarction. J. Am. Coll. Cardiol. 2018;71(3):263–275. https://doi.org/10.1016/j.jacc.2017.11.024.
32. Goh FQ, Kong WKF, Wong RCC, Chong YF, Chew NWS, Yeo TC et al. Cognitive Impairment in Heart Failure – A Review. Biology. 2022;11(2):179. https://doi.org/10.3390/biology11020179.
33. Hammond CA, Blades NJ, Chaudhry SI, Dodson JA, Longstreth WT Jr, Heckbert SR et al. Long-Term Cognitive Decline After Newly Diagnosed Heart Failure: Longitudinal Analysis in the CHS (Cardiovascular Health Study). Circ Heart Fail. 2018;11(3):e004476. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004476.
34. Sun N, Mei Y, Hu Z, Xing W, Lv K, Hu N et al. Ghrelin attenuates depressivelike behavior, heart failure, and neuroinflammation in postmyocardial infarction rat model. Eur J Pharmacol. 2021;901:174096. https://doi.org/10.1016/j.ejphar.2021.174096.
35. Wang HW, Ahmad M, Jadayel R, Najjar F, Lagace D, Leenen FHH. Inhibition of inflammation by minocycline improves heart failure and depressionlike behaviour in rats after myocardial infarction. PLoS ONE. 2019;14(6):e0217437. https://doi.org/10.1371/journal.pone.0217437.
36. Hu JR, Abdullah A, Nanna MG, Soufer R. The Brain–Heart Axis: Neuroinflammatory Interactions in Cardiovascular Disease. Curr Cardiol Rep. 2023;25(12):1745–1758. https://doi.org/10.1007/s11886-023-01990-8.
37. Yang T, Lu Z, Wang L, Zhao Y, Nie B, Xu Q et al. Dynamic Changes in Brain Glucose Metabolism and Neuronal Structure in Rats with Heart Failure. Neuroscience. 2020;424:34–44. https://doi.org/10.1016/j.neuroscience.2019.10.008.
38. Bath PM, Woodhouse LJ, Appleton JP, Beridze M, Christensen H, Dineen RA et al. Triple versus guideline antiplatelet therapy to prevent recurrence after acute ischaemic stroke or transient ischaemic attack: the TARDIS RCT. Health Technol Assess. 2018;22(48):1–76. https://doi.org/10.3310/hta22480.
39. Hilkens NA, Algra A, Kappelle LJ, Bath PM, Csiba L, Rothwell PM, Greving JP. Early time course of major bleeding on antiplatelet therapy after TIA or ischemic stroke. Neurology. 2018;90(8):e683–e689. https://doi.org/10.1212/WNL.0000000000004997.
40. Petrova MM, Shnayder NA, Petrov AV, Evsyukov AA, Dmitrenko DV, Sizikova DD. MicroRNA-134-5p and the heart-brain axis. Siberian Medical Review. 2024;(6):14–18. (In Russ.) Available at: https://smr.krasgmu.ru/journal/2463_smo_6_150__2024_petrova_m.m.-14-18.pdf.
41. Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood–Brain Barrier Breakdown in Alzheimer’s Disease: Mechanisms and Targeted Strategies. Int J Mol Sci. 2023;24(22):16288. https://doi.org/10.3390/ijms242216288.
Review
For citations:
Evsyukov AA, Petrova MM, Shnayder NA, Shimokhina NY, Kaskaeva DS, Leyman AR, Azimova SN, Bekuzarova AM, Stepanenko SS. Pathophysiology of vascular cognitive disorders associated with myocardial infarction. Meditsinskiy sovet = Medical Council. 2025;(16):305–313. (In Russ.) https://doi.org/10.21518/ms2025-419
JATS XML


































