Preview

Meditsinskiy sovet = Medical Council

Advanced search

Factor analysis of the odds of having metabolic syndrome in young people with long-term residence in areas considered as the Far North

https://doi.org/10.21518/ms2025-556

Abstract

Introduction. The use of factor analysis in the study of metabolic syndrome (MS) makes it possible to assess the independent effect of each factor and their synergistic effect on the likelihood of developing the disease.

Aim. To assess the risk of developing MS in young indigenous and non-indigenous individuals with long-term residence in areas considered to be the Far North.

Materials and methods. A case-control study was conducted among 863 young people aged 18–44 years. The study involved 283 men and 580 women, as well as non-indigenous people (583 people) and indigenous people (small peoples of the Far North – Khanty) (280 people) by ethnicity. A one-factor and multifactorial logistic regression analyses of the relationship between factors and the chance of MS in young people in the general sample, by age and ethnicity, were carried out.

Results. In all the analyzed groups, the chance of having a MS was significantly associated with an increase in the TyG index and non-high-density lipoprotein cholesterol (non-HDL-C) levels. With an increase in the TyG index by one conventional unit, the chance of MS in the non-indigenous group increased 22-fold, which is 4.7 times higher than in the indigenous group, and with an increase of 1 mmol/L, the non-HDL-C level was 3.4 mmol/L 3-fold higher than in the indigenous group.

Conclusion. The TyG index was significantly associated with the odds of having MS, more so than the HOMA-IR index. A significant association was observed with an increase in non-HDL-C levels, predominantly in men (21.4-fold, p < 0.001) and in non-natives (18.7-fold, p < 0.001).

About the Authors

E. V. Korneeva
Surgut State University
Russian Federation

Elena V. Korneeva, Cand. Sci. (Med.), Associate Professor of the Department of Internal Diseases

1, Lenin Ave., Surgut, Khanty-Mansiysk Autonomous Okrug – Yugra, 628412



M. I. Voevoda
Federal Research Center for Fundamental and Translational Medicine
Russian Federation

Mikhail I. Voevoda, Acad. RAS, Dr. Sci. (Med.), Professor, Director

2, Timakov St., Novosibirsk, 630117



L. V. Shcherbakova
Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
Russian Federation

Liliya V. Shcherbakova, Senior Researcher at the Laboratory of Clinical, Population and Preventive Studies of Therapeutic and Endocrine Diseases

175/1, B. Bogatkov St., Novosibirsk, 630089



References

1. Kassi E, Pervanidou P, Kaltsas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med. 2011;9:48. https://doi.org/10.1186/1741-7015-9-48.

2. Kytikova OYu, Antonyuk MV, Kantur TA, Novgorodtseva TP, Denisenko YuK. Prevalence and biomarkers in metabolic syndrome. Obesity and Metabolism. 2021;18(3):302–312. (In Russ.) https://doi.org/10.14341/omet12704.

3. Gurka MJ, Ice CL, Sun SS, Deboer MD. A confirmatory factor analysis of the metabolic syndrome in adolescents: an examination of sex and racial/ ethnic differences. Cardiovasc Diabetol. 2012;11:128. https://doi.org/10.1186/1475-2840-11-128.

4. Чазова ИЕ, Мычка ВБ, Кисляк ОА, Кузнецова ИВ, Литвин АЮ, Шестакова МВ. Рекомендации экспертов всероссийского научного общества кардиологов по диагностике и лечению метаболического синдрома (второй пересмотр). М.; 2009. 32 с. Режим доступа: https://recipture.ru/DPrompter/metabol.pdf.

5. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. https://doi.org/10.1007/BF00280883.

6. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304. Available at: https://pubmed.ncbi.nlm.nih.gov/19067533/.

7. Er LK, Wu S, Chou HH, Hsu LA, Teng MS, Sun YC, Ko YL. Triglyceride GlucoseBody Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE. 2016;11(3):e0149731. https://doi.org/10.1371/journal.pone.0149731.

8. Aleksandrova YuD, Kolosnitsyna MG. Overweight Population in Russia: Statistical Analysis. Voprosy Statistiki. 2018;25(10):61–77. (In Russ.) Available at: https://voprstat.elpub.ru/jour/article/view/776.

9. Климова ТМ, Егорова АГ, Захарова РН, Аммосова ЕП, Балтахинова МЕ, Федоров АИ, Романова АН. Метаболический синдром среди коренной женской популяции Якутии. Якутский медицинский журнал. 2019;(3):66–69. https://doi.org/10.25789/YMJ.2019.67.

10. Klimova TM, Egorova AG, Zakharova RN, Ammosova EP, Baltakhinova ME, Fedorov AI, Romanova AN. Metabolic syndrome among Yakutia’s indigenous female population. Yakut Medical Journal. 2019;(3):66–69. https://doi.org/10.25789/YMJ.2019.67.19.

11. Simonova GI, Mustafina SV, Rymar OD, Scherbakova LV, Nikitenko TI, Bobak M, Malyutina SK. Metabolic syndrome and the risk of cardiovascular and all-cause mortality: data of 14-year prospective cohort study in Siberia. Russian Journal of Cardiology. 2020;25(6):3821. (In Russ.) https://doi.org/10.15829/1560-4071-2020-3821.

12. Michalsen VL, Kvaløy K, Svartberg J, Siri SRA, Melhus M, Broderstad AR. Change in prevalence and severity of metabolic syndrome in the Sami and non-Sami population in rural Northern Norway using a repeated cross-sectional population-based study design: the SAMINOR Study. BMJ Open. 2019;9(6):e027791. https://doi.org/10.1136/bmjopen-2018-027791.

13. Kalupahana NS, Moustaid-Moussa N. The renin-angiotensin system: a link between obesity, inflammation and insulin resistance. Obes Rev. 2012;13(2):136–149. Available at: https://www.sci-hub.ru/10.1111/j.1467-789x.2011.00942.x.

14. Kanugula AK, Kaur J, Batra J, Ankireddypalli AR, Velagapudi R. ReninAngiotensin System: Updated Understanding and Role in Physiological and Pathophysiological States. Cureus. 2023;15(6):e40725. https://doi.org/10.7759/cureus.40725.

15. Pahlavani M, Kalupahana NS, Ramalingam L, Moustaid-Moussa N. Regulation and Functions of the Renin-Angiotensin System in White and Brown Adipose Tissue. Compr Physiol. 2017;7(4):1137–1150. https://doi.org/10.1002/cphy.c160031.

16. Uchiyama T, Tomono S, Sato K, Nakamura T, Kurabayashi M, Okajima F. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src. PLoS ONE. 2015;10(10):e0139638. https://doi.org/10.1371/journal.pone.0139638.

17. Tahapary DL, Pratisthita LB, Fitri NA, Marcella C, Wafa S, Kurniawan F et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab Syndr. 2022;16(8):102581. https://doi.org/10.1016/j.dsx.2022.102581.

18. Wan H, Cao H, Ning P. Superiority of the triglyceride glucose index over the homeostasis model in predicting metabolic syndrome based on NHANES data analysis. Sci Rep. 2024;14(1):15499. https://doi.org/10.1038/s41598-024-66692-9.

19. Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean National Health and Nutrition Examination Survey. PLoS ONE. 2019;14(3):e0212963. https://doi.org/10.1371/journal.pone.0212963.

20. Son DH, Lee HS, Lee YJ, Lee JH, Han JH. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr Metab Cardiovasc Dis. 2022;32(3):596–604. https://doi.org/10.1016/j.numecd.2021.11.017.

21. Wang A, Tian X, Zuo Y, Chen S, Meng X, Wu S, Wang Y. Change in triglycerideglucose index predicts the risk of cardiovascular disease in the general population: a prospective cohort study. Cardiovasc Diabetol. 2021;20(1):113. https://doi.org/10.1186/s12933-021-01305-7.

22. Wei X, Min Y, Song G, Ye X, Liu L. Association between triglyceride-glucose related indices with the all-cause and cause-specific mortality among the population with metabolic syndrome. Cardiovasc Diabetol. 2024;23(1):134. https://doi.org/10.1186/s12933-024-02215-0.

23. Gounden V, Devaraj S, Jialal I. The role of the triglyceride-glucose index as a biomarker of cardio-metabolic syndromes. Lipids Health Dis. 2024;23(1):416. https://doi.org/10.1186/s12944-024-02412-6.

24. Shalnova SA, Metelskaya VA, Kutsenko VA, Yarovaya EB, Kapustina AV, Muromtseva GA, et al. Non-High Density Lipoprotein Cholesterol: A Modern Benchmark for Assessing Lipid Metabolism Disorders. Rational Pharmacotherapy in Cardiology. 2022;18(4):366–375. https://doi.org/10.20996/1819-6446-2022-07-01.

25. Khan SH, Asif N, Ijaz A, Manzoor SM, Niazi NK, Fazal N. Status of non-HDLcholesterol and LDL-cholesterol among subjects with and without metabolic syndrome. J Pak Med Assoc. 2018;68(4):554–558. Available at: https://www.archive.jpma.org.pk/PdfDownload/8643.

26. Wang S, Tu J, Pan Y. Threshold Effects in the Relationship Between Serum NonHigh-Density Lipoprotein Cholesterol and Metabolic Syndrome. Diabetes Metab Syndr Obes. 2019;12:2501–2506. https://doi.org/10.2147/DMSO.S232343.

27. Langlois MR, Nordestgaard BG, Langsted A, Chapman M, Aakre KM, Baum H et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM. Laboratory Service. 2021;10(1):45–67. (In Russ.) https://doi.org/10.17116/labs20211001145.

28. Kashirina AP, Mustafina SV, Simonova GI. Is non-high-density lipoprotein cholesterol a marker of metabolic syndrome and type 2 diabetes? A population-based study. Therapy. 2023;9(3S):201–202. (In Russ.) Available at: https://therapy-journal.ru/articles/YaVLYaETSYa-LI-HOLESTERIN-LIPOPROTEIDOVNEVYSOKOI-PLOTNOSTI-MARKEROM-METABOLIChESKOGO-SINDROMAI-SAHARNOGO-DIABETA-2-GO-TIPA-POPULYaCIONNOE-ISSLEDOVAN.html.

29. Navar-Boggan AM, Peterson ED, D’Agostino RB Sr, Neely B, Sniderman AD, Pencina MJ. Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation. 2015;131(5):451–458. https://doi.org/10.1161/CIRCULATIONAHA.114.012477.

30. Abdullah SM, Defina LF, Leonard D, Barlow CE, Radford NB, Willis BL et al. Long-Term Association of Low-Density Lipoprotein Cholesterol With Cardiovascular Mortality in Individuals at Low 10-Year Risk of Atherosclerotic Cardiovascular Disease. Circulation. 2018;138(21):2315–2325. https://doi.org/10.1161/CIRCULATIONAHA.118.034273.

31. Pencina KM, Thanassoulis G, Wilkins JT, Vasan RS, Navar AM, Peterson ED et al. Trajectories of Non-HDL Cholesterol Across Midlife: Implications for Cardiovascular Prevention. J Am Coll Cardiol. 2019;74(1):70–79. https://doi.org/10.1016/j.jacc.2019.04.047.


Review

For citations:


Korneeva EV, Voevoda MI, Shcherbakova LV. Factor analysis of the odds of having metabolic syndrome in young people with long-term residence in areas considered as the Far North. Meditsinskiy sovet = Medical Council. 2025;(23):26-33. (In Russ.) https://doi.org/10.21518/ms2025-556

Views: 16

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)