Preview

Meditsinskiy sovet = Medical Council

Advanced search

Atrial fibrillation burden: A factor affecting direct oral anticoagulant use

https://doi.org/10.21518/ms2025-561

Abstract

This article discusses the issue of personalized approach for anticoagulants choice according to the atrial fibrillation burden (AFB), primarily in patients with subclinical atrial fibrillation (SCAF), i.e., atrial fibrillation (AF), which is identified using various cardiac implanted or wearable devices, but not on the electrocardiogram. There is some epidemiological evidence that the issue of AF as one of major risk factors for stroke and/or systemic embolism (SE) is becoming more prominent. Various interpretations of the term “AFB” are considered, and the data regarding its clinical significance are presented in detail. Current approaches to the prescription of direct oral anticoagulants (DOACs) in patients with SCAF according to the estimated risk of stroke/SE, and the known history of stroke or transient ischemic attack (TIA) are discussed. The results of the data analysis for subjects of the randomized clinical trial (RCT) evaluating the efficacy of DOAC use in patients with SCAF are considered. The data on the prognostic role of AFB in patients with AF including those with heart failure and reduced left ventricular ejection fraction are presented. The authors address the issue of DOAC choice in patients with SCAF, as well as the significance of once-daily DOACs in this situation. The cost-effectiveness of DOAC use for stroke and/or TIA prevention in patients with SCAF, which largely depends on the cost of therapy, is discussed.

 

About the Author

S. R. Gilyarevskiy
Botkin Moscow Multidisciplinary Scientific and Clinical Center; Russian Medical Academy of Continuous Professional Education
Russian Federation

Sergey R. Gilyarevskiy, Dr. Sci. (Med.), Professor, Leading Researcher, Botkin Moscow Multidisciplinary Scientific and Clinical Center; Professor of the Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education

5, 2nd Botkinskiy Proezd, Moscow, 125284, 

2/1, Bldg. 1, Barrikadnaya St., Moscow, 125993



References

1. Mensah GA, Fuster V, Murray CJL, Roth GA. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J Am Coll Cardiol. 2023;82(25):2350–2473. https://doi.org/10.1016/j.jacc.2023.11.007.

2. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021;128(11):1580–1591. https://doi.org/10.1016/j.ophtha.2021.04.027.

3. Mamadapur M, Gaidhane AM, Padhi BK, Zahiruddin QS, Sharma RK, Rustagi S et al. Burden of rheumatic diseases among people with diabetes: A systematic review and meta-analysis. Narra J. 2024;4(3):e863. https://doi.org/10.52225/narra.v4i3.863.

4. Chew DS, Li Z, Steinberg BA, O’Brien EC, Pritchard J, Bunch TJ et al. Arrhythmic Burden and the Risk of Cardiovascular Outcomes in Patients With Paroxysmal Atrial Fibrillation and Cardiac Implanted Electronic Devices. Circ Arrhythm Electrophysiol. 2022;15(2):e010304. https://doi.org/10.1161/CIRCEP.121.010304.

5. AlTurki A, Essebag V. Atrial Fibrillation Ablation: Impact on Burden and Cardiovascular Outcomes. J Clin Med. 2025;14(8):2648. https://doi.org/10.3390/jcm14082648.

6. Feigin VL, Abate MD, Abate YH, Abd ElHafeez S, Abd-Allah F, Abdelalim A et al. Global, regional, and national burden of stroke and its risk factors, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024;23(10):973–1003. https://doi.org/10.1016/S1474-4422(24)00369-7.

7. Ohlrogge AH, Brederecke J, Schnabel RB. Global Burden of Atrial Fibrillation and Flutter by National Income: Results From the Global Burden of Disease 2019 Database. J Am Heart Assoc. 2023;12(17):e030438. https://doi.org/10.1161/JAHA.123.030438.

8. See C, Grubman S, Shah N, Hu JR, Nanna M, Freeman JV, Murugiah K. Healthcare Expenditure on Atrial Fibrillation in the United States: The Medical Expenditure Panel Survey 2016 to 2021. JACC Adv. 2025;4(5):101716. https://doi.org/10.1016/j.jacadv.2025.101716.

9. Doehner W, Boriani G, Potpara T, Blomstrom-Lundqvist C, Passman R, Sposato LA et al. Atrial fibrillation burden in clinical practice, research, and technology development: a clinical consensus statement of the European Society of Cardiology Council on Stroke and the European Heart Rhythm Association. Europace. 2025;27(3):euaf019. https://doi.org/10.1093/europace/euaf019.

10. Charitos EI, Stierle U, Ziegler PD, Baldewig M, Robinson DR, Sievers HH, Hanke T. A comprehensive evaluation of rhythm monitoring strategies for the detection of atrial fibrillation recurrence: insights from 647 continuously monitored patients and implications for monitoring after therapeutic interventions. Circulation. 2012;126(7):806–814. https://doi.org/10.1161/CIRCULATIONAHA.112.098079.

11. Wineinger NE, Barrett PM, Zhang Y, Irfanullah I, Muse ED, Steinhubl SR, Topol EJ. Identification of paroxysmal atrial fibrillation subtypes in over 13,000 individuals. Heart Rhythm. 2019;16(1):26–30. https://doi.org/10.1016/j.hrthm.2018.08.012.

12. Van Gelder IC, Healey JS, Crijns HJGM, Wang J, Hohnloser SH, Gold MR et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J. 2017;38(17):1339–1344. https://doi.org/10.1093/eurheartj/ehx042.

13. Glotzer TV, Daoud EG, Wyse DG, Singer DE, Ezekowitz MD, Hilker C et al. The relationship between daily atrial tachyarrhythmia burden from implantable device diagnostics and stroke risk: the TRENDS study. Circ Arrhythm Electrophysiol. 2009;2(5):474–480. https://doi.org/10.1161/CIRCEP.109.849638.

14. Kaplan RM, Koehler J, Ziegler PD, Sarkar S, Zweibel S, Passman RS. Stroke Risk as a Function of Atrial Fibrillation Duration and CHA2DS2-VASc Score. Circulation. 2019;140(20):1639–1646. https://doi.org/10.1161/CIRCULATIONAHA.119.041303.

15. Go AS, Reynolds K, Yang J, Gupta N, Lenane J, Sung SH et al. Association of Burden of Atrial Fibrillation With Risk of Ischemic Stroke in Adults With Paroxysmal Atrial Fibrillation: The KP-RHYTHM Study. JAMA Cardiol. 2018;3(7):601–608. https://doi.org/10.1001/jamacardio.2018.1176.

16. Marrouche NF, Brachmann J, Andresen D, Siebels J, Boersma L, Jordaens L et al. Catheter Ablation for Atrial Fibrillation with Heart Failure. N Engl J Med. 2018;378(5):417–427. https://doi.org/10.1056/NEJMoa1707855.

17. Brachmann J, Sohns C, Andresen D, Siebels J, Sehner S, Boersma L et al. Atrial Fibrillation Burden and Clinical Outcomes in Heart Failure: The CASTLE-AF Trial. JACC Clin Electrophysiol. 2021;7(5):594–603. https://doi.org/10.1016/j.jacep.2020.11.021.

18. Sciacca V, Sohns C, Crijns HJGM, Marrouche NF, Schramm R, Moersdorf M et al. Effects of atrial fibrillation ablation on arrhythmia burden and ventricular function in end-stage heart failure: Lessons from CASTLE-HTx. Eur J Heart Fail. 2025;27(2):255–263. https://doi.org/10.1002/ejhf.3505.

19. Van Gelder IC, Rienstra M, Bunting KV, Casado-Arroyo R, Caso V, Crijns HJGM et al. 2024 ESC Guidelines for the management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2024;45(36):3314–3414. https://doi.org/10.1093/eurheartj/ehae176.

20. Healey JS, Lopes RD, Granger CB, Alings M, Rivard L, McIntyre WF et al. Apixaban for Stroke Prevention in Subclinical Atrial Fibrillation. N Engl J Med. 2024;390(2):107–117. https://doi.org/10.1056/NEJMoa2310234.

21. McIntyre WF, Benz AP, Healey JS, Connolly SJ, Yang M, Lee SF et al. Risk of Stroke or Systemic Embolism According to Baseline Frequency and Duration of Subclinical Atrial Fibrillation: Insights From the ARTESiA Trial. Circulation. 2024;150(22):1747–1755. https://doi.org/10.1161/CIRCULATIONAHA.124.069903.

22. Lopes RD, Granger CB, Wojdyla DM, McIntyre WF, Alings M, Mani T et al. Apixaban vs Aspirin According to CHA2DS2-VASc Score in Subclinical Atrial Fibrillation: Insights From ARTESiA. J Am Coll Cardiol. 2024;84(4):354–364. https://doi.org/10.1016/j.jacc.2024.05.002.

23. Shoamanesh A, Field TS, Coutts SB, Sharma M, Gladstone D, Hart RG et al. Apixaban versus aspirin for stroke prevention in people with subclinical atrial fibrillation and a history of stroke or transient ischaemic attack: subgroup analysis of the ARTESiA randomised controlled trial. Lancet Neurol. 2025;24(2):140–151. https://doi.org/10.1016/S1474-4422(24)00475-7.

24. Svennberg E. What Lies beneath the Surface – Treatment of Subclinical Atrial Fibrillation. N Engl J Med. 2024;390(2):175–177. https://doi.org/10.1056/NEJMe2311558.

25. Patel SM, Ruff CT. Subclinical Atrial Fibrillation and Anticoagulation: Weighing the Absolute Risks and Benefits. Circulation. 2024;149(13): 989–992. https://doi.org/10.1161/CIRCULATIONAHA.123.067919.

26. Aggarwal R, Ruff CT, Virdone S, Perreault S, Kakkar AK, Palazzolo MG et al. Development and Validation of the DOAC Score: A Novel Bleeding Risk Prediction Tool for Patients With Atrial Fibrillation on Direct-Acting Oral Anticoagulants. Circulation. 2023;148(12):936–946. https://doi.org/10.1161/CIRCULATIONAHA.123.064556.

27. Chan YH, Kao YW, Chen SW, Chao TF. Performance of DOAC and HAS-BLED scores in predicting major bleeding in Asian patients with non-valvular atrial fibrillation receiving direct oral anticoagulants. Europace. 2025;27(11):euaf251. https://doi.org/10.1093/europace/euaf251.

28. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–891. https://doi.org/10.1056/NEJMoa1009638.

29. Andrade JG, Krahn AD, Skanes AC, Purdham D, Ciaccia A, Connors S. Values and Preferences of Physicians and Patients With Nonvalvular Atrial Fibrillation Who Receive Oral Anticoagulation Therapy for Stroke Prevention. Can J Cardiol. 2016;32(6):747–753. https://doi.org/10.1016/j.cjca.2015.09.023.

30. Kirchhof P, Toennis T, Goette A, Camm AJ, Diener HC, Becher N et al. Anticoagulation with Edoxaban in Patients with Atrial High-Rate Episodes. N Engl J Med. 2023;389(13):1167–1179. https://doi.org/10.1056/NEJMoa2303062.

31. Lamy A, Sandhu RK, Tong W, McIntyre WF, Lopes RD, Granger CB et al. Costeffectiveness of apixaban vs. aspirin for the reduction of thromboembolism in high-risk patients with device-detected atrial fibrillation: insights from the ARTESiA trial. Europace. 2025;27(9):euaf195. https://doi.org/10.1093/europace/euaf195.

32. Nagadurga DH. Bioavailability and bioequivalence studies. In: Ahmad U, Akhtar J (eds.). Pharmaceutical Formulation Design – Recent Practices. London: IntechOpen; 2020. https://doi.org/10.5772/intechopen.85145.


Review

For citations:


Gilyarevskiy SR. Atrial fibrillation burden: A factor affecting direct oral anticoagulant use. Meditsinskiy sovet = Medical Council. 2025;(23):34-39. (In Russ.) https://doi.org/10.21518/ms2025-561

Views: 14

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-701X (Print)
ISSN 2658-5790 (Online)