Indolecarbinol: Mechanisms of action, effects and prospects for clinical use
https://doi.org/10.21518/ms2025-557
Abstract
This article describes the protective effects of indolecarbinol (IC) and its derivative diindolylmethane (DIM) on the functioning of the cardiovascular, nervous, reproductive, musculoskeletal, and immune systems, as well as the liver. Experimental data indicate that IC and DIM provide organ and tissue protection through their antioxidant, anti-inflammatory, antiapoptotic, immunomodulatory, and xenobiotic properties. To date, most reports of the protective effects of IC and DIM in the treatment of various diseases have been obtained only in preclinical studies; this underscores the urgent need for large-scale clinical trials of these promising phytochemicals. The molecular mechanisms of action of IC and DIM, their pharmacokinetics, and experimental side effects are discussed. Data on the clinical efficacy and safety of an IC-based medicinal product in clinical practice are presented. Further in-depth studies of the efficacy and safety of IC/DIM preparations will significantly expand the arsenal of pharmacological agents for combating socially significant diseases. The studies we analysed have demonstrated that DIM and IC have common and several unique anti-tumour mechanisms, which efficacy depends on the tumour type and/or genotype of the cancer cell line. For example, both compounds influence BC cell cycle progression and inhibit cell growth and migration. In addition, these compounds enhance the expression of detoxifying and antioxidant enzymes by the activation of the Nrf2-dependent pathway and can also influence cell proliferation, apoptosis, migration, invasion, angiogenesis, and immunity. This article examines all the major mechanisms of antitumor action.
About the Author
E. N. KarevaRussian Federation
Elena N. Kareva, Dr. Sci. (Med.), Professor, Professor of the Department of Molecular Pharmacology and Radiobiology named after Acad. P.V. Sergeev, Pirogov Russian National Research Medical University; Professor of the Department of Pharmacology, Institute of Digital Biodesign and Artificial Intelligence in Medicine, Sechenov First Moscow State Medical University (Sechenov University)
1, Ostrovityanov St., Moscow, 117997,
8, Bldg. 2, Trubetskaya St., Moscow, 119991
References
1. Srikanth Y, Reddy DH, Anusha VL, Dumala N, Viswanadh MK, Chakravarthi G et al. Unveiling the Multifaceted Pharmacological Actions of Indole-3- Carbinol and Diindolylmethane: A Comprehensive Review. Plants. 2025;14(5):827. https://doi.org/10.3390/plants14050827.
2. Hubbard TD, Murray IA, Perdew GH. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab Dispos. 2015;43(10):1522–1535. https://doi.org/10.1124/dmd.115.064246.
3. Safe S. Molecular biology of the Ah receptor and its role in carcinogenesis. Toxicol Lett. 2001;120(1-3):1–7. https://doi.org/10.1016/s0378-4274(01)00301-0.
4. Li Y, Li X, Sarkar FH. Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. J Nutr. 2003;133(4):1011–1019. https://doi.org/10.1093/jn/133.4.1011.
5. Saw CL, Cintrón M, Wu TY, Guo Y, Huang Y, Jeong WS, Kong AN. Pharmacodynamics of dietary phytochemical indoles IC and DIM: Induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos. 2011;32(5):289–300. https://doi.org/10.1002/bdd.759.
6. Shilovsky GA, Sorokina EV, Orlovsky IV. Transcription factor NRF2 – a target of potential antioxidant drugs: prospects in treatment of age-related diseases. Clinical Gerontology. 2021;(11-12):57–62. (In Russ.) https://doi.org/10.26347/1607-2499202111-12057-062.
7. Watson GW, Beaver LM, Williams DE, Dashwood RH, Ho E. Phytochemicals from cruciferous vegetables, epigenetics, and prostate cancer prevention. AAPS J. 2013;15(4):951–961. https://doi.org/10.1208/s12248-013-9504-4.
8. Wu TY, Khor TO, Su ZY, Saw CL, Shu L, Cheung KL et al. Epigenetic modifications of Nrf2 by 3,3'-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J. 2013;15(3):864–874. https://doi.org/10.1208/s12248-013-9493-3.
9. Licznerska BE, Szaefer H, Murias M, Bartoszek A, Baer-Dubowska W. Modulation of CYP19 expression by cabbage juices and their active components: indole-3- carbinol and 3,3'-diindolylmethene in human breast epithelial cell lines. Eur J Nutr. 2013;52(5):1483–1492. https://doi.org/10.1007/s00394-012-0455-9.
10. Yuan F, Chen DZ, Liu K, Sepkovic DW, Bradlow HL, Auborn K. Anti-estrogenic activities of indole-3-carbinol in cervical cells: implication for prevention of cervical cancer. Anticancer Res. 1999;19(3A):1673–1680. Available at: https://pubmed.ncbi.nlm.nih.gov/10470100.
11. Bradlow HL, Telang NT, Sepkovic DW, Osborne MP. 2-hydroxyestrone: the ‘good’ estrogen. J Endocrinol. 1996;150(Suppl.):S259–S265. Available at: https://pubmed.ncbi.nlm.nih.gov/8943806/.
12. Reed GA, Peterson KS, Smith HJ, Gray JC, Sullivan DK, Mayo MS et al. A phase I study of indole-3-carbinol in women: tolerability and effects. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1953–1960. https://doi.org/10.1158/1055-9965.EPI-05-0121.
13. Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL. Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell. 2010;21(7):1166–1177. https://doi.org/10.1091/mbc.e09-08-0689.
14. Biersack B. 3,3'-Diindolylmethane and its derivatives: nature-inspired strategies tackling drug resistant tumors by regulation of signal transduction, transcription factors and microRNAs. Cancer Drug Resist. 2020;3(4):867–878. https://doi.org/10.20517/cdr.2020.53.
15. Vlasov AV, Yakushevskaya OV. Chemopreventive properties of 3,3'-diindolylmethane: From experimental to clinical studies. A review. Gynecology. 2024;26(3):270–274. (In Russ.) https://doi.org/10.26442/20795696.2024.3.202953
16. Ho JN, Jun W, Choue R, Lee J. IC and ICZ inhibit migration by suppressing the EMT process and FAK expression in breast cancer cells. Mol Med Rep. 2013;7(2):384–388. https://doi.org/10.3892/mmr.2012.1198.
17. Li WX, Chen LP, Sun MY, Li JT, Liu HZ, Zhu W. 3’3-Diindolylmethane inhibits migration, invasion and metastasis of hepatocellular carcinoma by suppressing FAK signaling. Oncotarget. 2015;6(27):23776–23792. https://doi.org/10.18632/oncotarget.4196.
18. Wong CP, Hsu A, Buchanan A, Palomera-Sanchez Z, Beaver LM, Houseman EA et al. Effects of sulforaphane and 3,3'-diindolylmethane on genome-wide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS ONE. 2014;9(1):e86787. https://doi.org/10.1371/journal.pone.0086787.
19. Wang ML, Shih CK, Chang HP, Chen YH. Antiangiogenic activity of indole-3- carbinol in endothelial cells stimulated with activated macrophages. Food Chem. 2012;134(2):811–820. https://doi.org/10.1016/j.foodchem.2012.02.185.
20. Wu HT, Lin SH, Chen YH. Inhibition of cell proliferation and in vitro markers of angiogenesis by indole-3-carbinol, a major indole metabolite present in cruciferous vegetables. J Agric Food Chem. 2005;53(13):5164–5169. https://doi.org/10.1021/jf050034w.
21. Kunimasa K, Kobayashi T, Kaji K, Ohta T. Antiangiogenic effects of indole-3- carbinol and 3,3'-diindolylmethane are associated with their differential regulation of ERK1/2 and Akt in tube-forming HUVEC. J Nutr. 2010;140(1):1–6. https://doi.org/10.3945/jn.109.112359.
22. Tsai JT, Liu HC, Chen YH. Suppression of inflammatory mediators by cruciferous vegetable-derivedindole-3-carbinoland phenylethyl isothiocyanate in lipopolysaccharide-activated macrophages. Mediators Inflamm. 2010;2010:293642. https://doi.org/10.1155/2010/293642.
23. Jiang J, Kang TB, Shim do W, Oh NH, Kim TJ, Lee KH. Indole-3- carbinolinhibitsLPS-induced inflammatory response by blocking TRIFdependent signaling pathway in macrophages. Food Chem Toxicol. 2013;57:256–261. https://doi.org/10.1016/j.fct.2013.03.040.
24. Cho HJ, Seon MR, Lee YM, Kim J, Kim JK, Kim SG, Park JH. 3,3'-Diindolylmethanesuppressestheinflammatory response to lipopolysaccharide in murine macrophages. J Nutr. 2008;138(1):17–23. https://doi.org/10.1093/jn/138.1.17.
25. Park SY, Shim JH, Kim JD, Yoon Park JH. The Effect of 12-O-Tetradecanoylphorbol13-acetate-induced COX-2 Expression by 3,3'-Diindolylmethane (DIM) on Human Mammary Epithelial Cells. J Korean Soc Food Sci Nutr. 2012;41(12):1701–1707. Available at: https://www.e-jkfn.org/journal/view.html?uid=5097&vmd=Full.
26. Rouse M, Rao R, Nagarkatti M, Nagarkatti PS. 3,3'-diindolylmethane ameliorates experimental autoimmune encephalomyelitis by promoting cell cycle arrest and apoptosis in activated T cells through microRNA signaling pathways. J Pharmacol Exp Ther. 2014;350(2):341–352. https://doi.org/10.1124/jpet.114.214742.
27. Elliott DM, Nagarkatti M, Nagarkatti PS. 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells. J Pharmacol Exp Ther. 2016;357(1):177–187. https://doi.org/10.1124/jpet.115.226563.
28. Singh NP, Singh UP, Rouse M, Zhang J, Chatterjee S, Nagarkatti PS, Nagarkatti M. Dietary Indoles Suppress Delayed-Type Hypersensitivity by Inducing a Switch from Proinflammatory Th17 Cells to Anti-Inflammatory Regulatory T Cells through Regulation of MicroRNA. J Immunol. 2016;196(3):1108–1122. https://doi.org/10.4049/jimmunol.1501727.
29. Higdon J, Drake VJ, Delage B, Williams DE. Indole-3-carbinol. Linus Pauling Institute, Micronutrient Information Center, Oregon State University; 2025. Available at: https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/indole-3-carbinol.
30. Choi KM, Yoo HS. Amelioration of Hyperglycemia-Induced Nephropathy by 3,3'-Diindolylmethane in Diabetic Mice. Molecules. 2019;24(24):4474. https://doi.org/10.3390/molecules24244474.
31. Maiyoh GK, Kuh JE, Casaschi A, Theriault AG. Cruciferous indole-3-carbinol inhibits apolipoprotein B secretion in HepG2 cells. J Nutr. 2007;137(10):2185–2189. https://doi.org/10.1093/jn/137.10.2185.
32. Chang HP, Wang ML, Hsu CY, Liu ME, Chan MH, Chen YH. Suppression of inflammation-associated factors by indole-3-carbinol in mice fed high-fat diets and in isolated, co-cultured macrophages and adipocytes. Int J Obes. 2011;35(12):1530–1538. https://doi.org/10.1038/ijo.2011.12.
33. Okulicz M, Hertig I, Chichlowska J. Effects of indole-3-carbinol on metabolic parameters and on lipogenesis and lipolysis in adipocytes. Czech J Anim Sci. 2009;54(4):182–189. https://doi.org/10.17221/1745-CJAS.
34. Choi Y, Um SJ, Park T. Indole-3-carbinol directly targets SIRT1 to inhibit adipocyte differentiation. Int J Obes. 2013;37(6):881–884. https://doi.org/10.1038/ijo.2012.158.
35. Mao X, Paerhati G, Wu Y, Cheng LF. Modulation of gut microbiota, upregulation of ZO-1, and promotion of metabolism as therapeutic mechanisms of indole-3-carbinol against obesity in mice. Front Pharmacol. 2024;15:1499142. https://doi.org/10.3389/fphar.2024.1499142.
36. Ezhilarasan D. Oxidative stress is bane in chronic liver diseases: Clinical and experimental perspective. Arab J Gastroenterol. 2018;19(2):56–64. https://doi.org/10.1016/j.ajg.2018.03.002.
37. Munakarmi S, Chand L, Shin HB, Jang KY, Jeong YJ. Indole-3-Carbinol Derivative DIM Mitigates Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Inflammatory Response, Apoptosis and Regulating Oxidative Stress. Int J Mol Sci. 2020;21(6):2048. https://doi.org/10.3390/ijms21062048.
38. Ramakrishna K, Sinku S, Majumdar S, Singh N, Gajendra TA, Rani A, Krishnamurthy S. Indole-3-carbinol ameliorated the thioacetamide-induced hepatic encephalopathy in rats. Toxicology. 2023;492:153542. https://doi.org/10.1016/j.tox.2023.153542.
39. Choi Y, Abdelmegeed MA, Song BJ. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem. 2018;55:12–25. https://doi.org/10.1016/j.jnutbio.2017.11.011.
40. Ping J, Gao AM, Xu D, Li RW, Wang H. Therapeutic effect of indole-3-carbinol on pig serum-induced hepatic fibrosis in rats. Yao Xue Xue Bao. 2011;46(8):915–921. (In Chinese) Available at: https://pubmed.ncbi. nlm.nih.gov/22007515/.
41. Paliwal P, Chauhan G, Gautam D, Dash D, Patne SCU, Krishnamurthy S. Indole3-carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn-Schmiedebergs Arch Pharmacol. 2018;391(6):613–625. https://doi.org/10.1007/s00210-018-1488-2.
42. Ramakrishna K, Jain SK, Krishnamurthy S. Pharmacokinetic and Pharmacodynamic Properties of Indole-3-carbinol in Experimental Focal Ischemic Injury. Eur J Drug Metab Pharmacokinet. 2022;47(4):593–605. https://doi.org/10.1007/s13318-022-00771-y.
43. Rzemieniec J, Wnuk A, Lasoń W, Bilecki W, Kajta M. The neuroprotective action of 3,3'-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/ CYP19A1 signaling. Apoptosis. 2019;24(5-6):435–452. https://doi.org/10.1007/s10495-019-01522-2.
44. Peng L, Zhu X, Wang C, Jiang Q, Yu S, Song G et al. Indole-3-carbinol (I3C) reduces apoptosis and improves neurological function after cerebral ischemia–reperfusion injury by modulating microglia inflammation. Sci Rep. 2024;14(1):3145. https://doi.org/10.1038/s41598-024-53636-6.
45. Matsumoto K, Kinoshita K, Yoshimizu A, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Laquinimod and 3,3'-diindolylemethane alleviate neuropathological events and neurological deficits in a mouse model of intracerebral hemorrhage. J Neuroimmunol. 2020;342:577195. https://doi.org/10.1016/j.jneuroim.2020.577195.
46. Gehrcke M, Sari MHM, Ferreira LM, Barbieri AV, Giuliani LM, Prado VC et al. Nanocapsules improve indole-3-carbinol photostability and prolong its antinociceptive action in acute pain animal models. Eur J Pharm Sci. 2018;111:133–141. https://doi.org/10.1016/j.ejps.2017.09.050.
47. Deng W, Zong J, Bian Z, Zhou H, Yuan Y, Zhang R et al. Indole-3- carbinolprotectsagainst pressure overload induced cardiac remodeling via activating AMPK-α. Mol Nutr Food Res. 2013;57(9):1680–1687. https://doi.org/10.1002/mnfr.201300012.
48. Deng W, Wei L, Zong J, Bian Z, Zhou H, Zhang R, Tang Q. Attenuation of cardiac remodeling by indole-3-carbinolinmice is associated with improved energy metabolism. Int J Cardiol. 2014;172(3):e531–e533. https://doi.org/10.1016/j.ijcard.2014.01.066.
49. Ramakrishna K, Krishnamurthy S. Indole-3-carbinol ameliorated the isoproterenol-induced myocardial infarction via multimodal mechanisms in Wistar rats. Nat Prod Res. 2022;36(23):6044–6049. https://doi.org/10.1080/14786419.2022.2041632.
50. Ampofo E, Lachnitt N, Rudzitis-Auth J, Schmitt BM, Menger MD, Laschke MW. Indole-3-carbinol is a potent inhibitor of ischemia–reperfusion–induced inflammation. J Surg Res. 2017;215:34–46. https://doi.org/10.1016/j.jss.2017.03.019.
51. Zhu Z, Xu W, Liu L. Ovarian aging: Mechanisms and intervention strategies. Med Rev. 2023;2(6):590–610. https://doi.org/10.1515/mr-2022-0031.
52. Hu H, Li F, Zhu F, Li J, Wang S, He Z et al. Indole-3-carbinolamelioratesovarian damagein female old mice through Nrf2/HO-1 pathway activation. Biochem Pharmacol. 2024;223:116193. https://doi.org/10.1016/j.bcp.2024.116193.
53. Baez-Gonzalez AS, Carrazco-Carrillo JA, Figueroa-Gonzalez G, QuintasGranados LI, Padilla-Benavides T, Reyes-Hernandez OD. Functional effect of indole-3 carbinol in the viability and invasive properties of cultured cancer cells. Biochem Biophys Rep. 2023;35:101492. https://doi.org/10.1016/j.bbrep.2023.101492.
54. Adwas AA, Elkhoely AA, Kabel AM, Abdel-Rahman MN, Eissa AA. Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice. J Infect Chemother. 2016;22(1):36–43. https://doi.org/0.1016/j.jiac.2015.10.001.
55. Hajra S, Patra AR, Basu A, Bhattacharya S. Prevention of doxorubicin (DOX)- induced genotoxicity and cardiotoxicity: Effect of plant derived small molecule indole-3-carbinol (I3C) on oxidative stress and inflammation. Biomed Pharmacother. 2018;101:228–243. https://doi.org/10.1016/j.biopha.2018.02.088.
56. Ilias I, Milionis C, Zoumakis E. An Overview of Glucocorticoid-Induced Osteoporosis. In: Feingold KR, Ahmed SF, Anawalt B, Blackman MR, Boyce A, Chrousos G et al. (eds.). Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. Available at: https://www.ncbi.nlm.nih.gov/books/NBK278968/.
57. Lin H, Gao X, Chen G, Sun J, Chu J, Jing K et al. Indole-3-carbinolasinhibitorsofg lucocorticoid-induced apoptosis in osteoblastic cells through blocking ROSmediated Nrf2 pathway. Biochem Biophys Res Commun. 2015;460(2):422–427. https://doi.org/10.1016/j.bbrc.2015.03.049.
58. Ma Y, Zhu Y, Wang F, Zhao G, Huang L, Lu R et al. 3,3'-Diindolylmethane promotes bone formation – A assessment in MC3T3-E1 cells and zebrafish. Biochem Pharmacol. 2024;230(Pt 3):116618. https://doi.org/10.1016/j.bcp.2024.116618.
59. Beaver LM, Yu TW, Sokolowski EI, Williams DE, Dashwood RH, Ho E. 3,3'-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol. 2012;263(3):345–351. https://doi.org/10.1016/j.taap.2012.07.007.
60. Boyle MC, Crabbs TA, Wyde ME, Painter JT, Hill GD, Malarkey DE et al. Intestinal lymphangiectasis and lipidosis in rats following subchronic exposure to indole-3-carbinol via oral gavage. Toxicol Pathol. 2012;40(4):561–576. https://doi.org/10.1177/0192623311436178.
61. Wyde ME, Boyle MC, Herbert RA, Nyska A, Adams ET, Atkinson B et al . Toxicology studies of indole-3-carbinol in F344/N rats and B6C3F1/N mice and toxicology and carcinogenesis studies of indole-3-carbinol in Harlan Sprague Dawley rats and B6C3F1/N mice (gavage studies). Natl Toxicol Program Tech Rep Ser. 2017;(584):NTP-TR-584. https://doi.org/10.22427/NTP-TR-584.
62. Wong GY, Bradlow L, Sepkovic D, Mehl S, Mailman J, Osborne MP. Dose-ranging study of indole-3-carbinol for breast cancer prevention. J Cell Biochem Suppl. 1997;67(S28-29):111–116. https://doi.org/10.1002/(sici)1097-4644(1997)28/29+3.0.co;2-k.
63. McAlindon TE, Gulin J, Chen T, Klug T, Lahita R, Nuite M. Indole-3-carbinol in women with SLE: effect on estrogen metabolism and disease activity. Lupus. 2001;10(11):779–783. https://doi.org/10.1177/096120330101001104.
64. Rosen CA, Woodson GE, Thompson JW, Hengesteg AP, Bradlow HL. Preliminary results of the use of indole-3-carbinol for recurrent respiratory papillomatosis. Otolaryngol Head Neck Surg. 1998;118(6):810–815. https://doi.org/10.1016/S0194-5998(98)70274-8.
65. Reed GA, Arneson DW, Putnam WC, Smith HJ, Gray JC, Sullivan DK et al. Singledose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3'-diindolylmethane. Cancer Epidemiol Biomarkers Prev. 2006;15(12):2477–2481. https://doi.org/10.1158/1055-9965.EPI-06-0396.
66. Kiselev VI, Smetnik VP, Suturina LV, Selivanov SP, Rudakova EB, Rakhmatullina IR et al. Indole carbinol is a multitargeted therapy option for cyclic mastodynia. Akusherstvo i Ginekologiya (Russian Federation). 2013;(7):56–63. (In Russ.) Available at: https://elibrary.ru/rfkyoj.
67. Rodionov VV, Smetnik AA. Benign breast diseases. Akusherstvo i Ginekologiya: Novosti, Mneniya, Obuchenie. 2018;(1):90–100. (In Russ.) Available at: https://acu-gin-journal.ru/ru/jarticles_acu/342.html.
68. Su J, Fang H, Lin Y, Yao Y, Liu Y, Zhong Y at et al. 3,3'-Diindolylmethane Ameliorates Metabolism Dysfunction-Associated Fatty Liver Disease via AhR/p38 MAPK Signaling. Nutrients. 2025;15;17(10):1681. https://doi.org/10.3390/nu17101681.
69. Hendler SS, Rorvik DM. PDR for Nutritional Supplements. 2nd ed. Thomson Reuters; 2008. 788 p.
70. Муйжнек ЕЛ, Киселев ВИ, Рожкова НИ, Ашрафян ЛА. Между мастопатией и раком молочной железы: факторы риска и патогенетическое лечение. М.: ГЭОТАР-Медиа; 2024. 336 c.
71. Pondugula SR, Flannery PC, Abbott KL, Coleman ES, Mani S, Samuel T, Xie W. Diindolylmethane, a naturally occurring compound, induces CYP3A4 and MDR1 gene expression by activating human PXR. Toxicol Lett. 2015;232(3):580–589. https://doi.org/10.1016/j.toxlet.2014.12.015.
Review
For citations:
Kareva EN. Indolecarbinol: Mechanisms of action, effects and prospects for clinical use. Meditsinskiy sovet = Medical Council. 2025;(23):151-159. (In Russ.) https://doi.org/10.21518/ms2025-557
JATS XML


































